

Bi-Annual Environmental Monitoring Report



Bi-Annual Environmental Monitoring Report

Table of Contents

1.	Introductio	on	4
	1.1 Execu	tive Summary	4
	1.2 Purpo	se of Environmental Monitoring	5
	1.3 Health	n, Social and Environmental Department	5
2.	Environm	ental Performance Indicators and Monitoring Schedule	5
3.	Project In	formation	7
	3.1 Projec	t Location	7
	3.2 Projec	t Description	8
4.	Environm	ental Monitoring Program	8
	4.1 Dust M	Aonitoring	8
	4.1.1	Monitoring Result for Dust Deposition Monitoring	8
	4.2 Ambie	ent Air Monitoring	9
	4.2.1	Monitoring Location	9
	4.2.2	Monitoring Method	10
	4.2.3	Monitoring Result for Ambient Air Quality Monitoring	11
		Air Quality Index	12
	4.2.5	Air Quality Mitigation Measures	14
		Evaluation	16
	4.3 Water	Quality Monitoring	18
	4.3.1	Monitoring Location	18
	4.3.2	Monitoring Result for Water Quality	20
	4.3.3	Water Quality Mitigation Measures	22
		Evaluation	25
	4.4 Noise	Monitoring	26
	4.4.1	Location Map of Noise Quality Monitoring Points	26
	4.4.2	Evaluation	26
	4.5 Soil Q	uality Monitoring	27
	4.5.1	Location Map of Soil Quality Monitoring Points	27
		Evaluation	28
	4.6 Waste	Management Monitoring	28
	4.6.1	Generation of Non-Hazardous Waste	28
	4.6.2	Generation of Hazardous Waste	30
	4.6.3	Waste Management Mitigation Measures	30
	4.6.4	Evaluation	32
5.	Biodiversi	ty Action Plan Implementation	33
		act Survey	33
		stem Restoration Plantations	34
	•	ersity Awareness Training	36
6.		Social Responsibility	36
	•	onal Health and Safety	37
		afety Measures	37
		pational Hazard Prevention and First Aid Training	37
8.		n and Recommendation	39
9.	Appendix		40
			-

၁ စီမံကိန်း မိတ်ဆက်

၁.၁ အကျဉ်းချုပ်အစီရင်ခံစာ

SHWE TAUNG Building Materials

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက်သည် မြန်မာနိုင်ငံ၌ကဏ္ဍမျိုးစုံတွင် စီးပွားရေးလုပ်ငန်းအမျိုးမျိုးတို့ကို ပိုင်ဆိုင် လုပ်ကိုင်လည်ပတ်နေသော Shwe Taung Group (STG) ၏ အစိတ်အပိုင်းတစ်ရပ်အနေဖြင့် မြန်မာနိုင်ငံ၊ မန္တလေးတိုင်း ဒေသကြီး၊ သာစည်မြို့နယ်၊ ပြည်ညောင်ကျေးရွာတွင် ၎င်း၏ တည်ရှိနေပြီးသော ရွှံ့ကျောက်ထုတ်လုပ်မှုကို တိုးချဲ့ဆောင်ရွက် လျက်ရှိပါသည်။ စီမံကိန်းသည် ရွှံ့ကျောက်ထုတ်လုပ်မှုကို တစ်နှစ်လျှင် တန် ၉၇,၀၀၀ မှ တန် ၂၉၀,၀၀၀ ထိ တိုးချဲ့ ထုတ်ယူရန် လျာထားပါသည်။ စီမံကိန်းတည်နေရာကို ပုံ ၁ တွင် ဖော်ပြထားပါသည်။

STC သည် ရွှံ့ကျောက်တူးဖော်ထုတ်လုပ်မှုစီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း (EIA) ကို Environmental Resources Management (ERM)- Hong Kong Limited ဖြင့် ဆောင်ရွက်ခဲ့ပါသည်။

ရွှံ့ကျောက်လုပ်ကွက် သည် STC ဘိလပ်မြေစက်ရုံ၏ အနောက်ဘက်တွင် တည်ရှိပါသည်။ ရွှံ့ကျောက်လုပ်ကွက်နှင့် STC ဘိလပ်မြေစက်ရုံ အရှေ့ဘက်ရှိ ထုံးကျောက်လုပ်ကွက် နှင့် စစ်ကိုင်းတိုင်းဒေသကြီး၊ ကလေးဝမြို့နယ်ရှိ ကျောက်မီးသွေး သတ္တုလုပ်ကွက်တို့သည် ကုန်ကြမ်းများကို ထောက်ပံ့ပေးလျက် STC ဘိလပ်မြေစက်ရုံထုတ်လုပ်မှုကို အထောက်အပံ့ပြု ဆောင်ရွက်လျက်ရှိပါသည်။

ရွှေတောင် သတ္တုတူးဖော်ထုတ်လုပ်ရေး ကုမ္ပဏီလီမိတက် (STM) သည် ရွှံ့ကျောက်ထုတ်လုပ်မှုလုပ်ငန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာကို ၂၀၂၂ ခုနှစ် နိုဝင်ဘာလ ၁၈ ရက်နေ့တွင် သယံဇာတနှင့်သဘာဝ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဝန်ကြီးဌာန (MONREC)၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန (ECD) ထံမှ အတည်ပြုချက် ရယူခဲ့ပြီး ECC ရရှိနိုင်ရေးအတွက် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၏ ညွှန်ကြားချက်နှင့်အညီ ဆက်လက်ဆောင်ရွက် လျက်ရှိပါသည်။ ရွှံ့ကျောက်ထုတ်ယူခွင့်လိုင်စင်သည် ၂၀၂၂ ခုနှစ် နိုဝင်ဘာ ၁၅ ရက်တွင် သက်တမ်းကုန်ဆုံးခဲ့ပြီး ၂၀၂၃ ခုနှစ် ဇွန် ၂၈ ရက်တွင် MONREC မှ လိုင်စင်သက်တမ်းတိုးခြင်းကို လက်ခံရရှိခဲ့ပါသည်။ ထို့ကြောင့် ရွှေတောင်သတ္တုတူးဖော်ရေး ကုမ္ပဏီလီမိတက်သည် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၏ လုပ်ငန်းစဉ်များ၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဥပဒေနှင့် နည်းဥပဒေများ၊ ပတ်ဝန်းကျင် စီမံခန့်ခွဲမှု အစီအစဉ်များကို လိုက်နာဆောင်ရွက်လျက်ရှိပြီး ၂၀၂၄ ခုနှစ်၊ နိုဝင်ဘာလမှ ၂၀၂၅ ခုနှစ်၊ ဧပြီလအတွက် ပတ်ဝန်းကျင်ဆိုင်ရာ စောင့်ကြပ်ကြည့်ရှုစစ်ဆေးခြင်း အစီရင်ခံစာကို တင်ပြခြင်း ဖြစ်ပါသည်

1. Introduction

1.1 Executive Summary

Shwe Taung Cement Company Ltd. (STC), is planning an expansion of the mudstone production at its existing mudstone quarry in Pyi Nyaung Village, Thazi Township in the Mandalay region of Myanmar (the Project). The Project expanded extraction of mudstone from 97,500 tonnes to 290,000 tonnes per year. The location of the Project is shown in Figure 1. STC has commissioned Environmental Resources Management (ERM)-Hong Kong, Limited to undertake the Environmental Impact Assessment (EIA) for the mudstone quarry Project.

The mudstone quarry is located to the west of the STC cement plant (Figure 1). The limestone and mudstone quarries as well as a coal mine in Kalaywa township of Sagaing region are operated by Shwe Taung Mining (STM), subsidiary of Shwe Taung Cement (STC) which supply raw materials exclusively to the STC cement plant. The limestone quarry, mudstone quarry and coal mine of STM are thus considered as associated facilities of the STC cement plant.

Shwe Taung Mining (STM) Co., Ltd. received the approval letter from Environmental Conservation Department (ECD), Ministry of Natural Resources and Environmental Conservation (MONREC) for the project of the Mudstone Quarry EIA report on 18th November 2022 and now processing to get ECC in line with the instruction of ECD. However, the Mudstone Extraction License was expired on 15th November 2022 and received the license renewal from MONREC on 28th June 2023. STM conducted environmental monitoring program in line with Environmental Management Plan and comply Environmental Conservation Law and Rules, the Procedure of ECD and submit this biannual environmental monitoring report for November 2024 to April 2025.

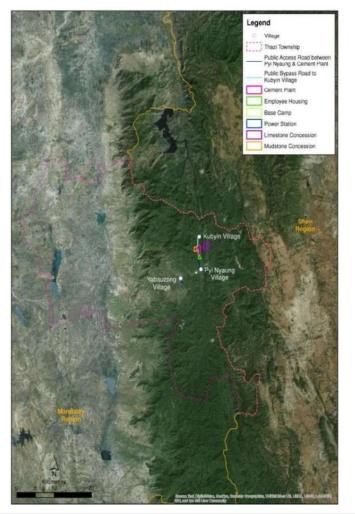
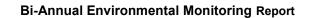



Figure-1: Location of the Mudstone Quarry (Township Level)

1.2 Purpose of Environmental Monitoring

Monitoring is a means of verifying the effectiveness of the management and mitigation measures contained within the management plans listed in STC EIA for Cement Plant.

- 1) The Environmental Engineers from HSE department of Cement Plant shall do the following:
 - Monitor and implement the this ESMP at site;
 - Conduct Environmental monthly inspection checklist audit;
 - Monitor laboratory personnel while conducting their water sampling and testing method;
 - Assist and monitor the implementation of Waste Management; and
 - Monitor and review the air emission test result for compliance recommendation.
 - All inspection checklist audit finding that needs rectification shall be recorded in Environmental and Social tracker and will be assigned by Environmental Manager to concerned department head for rectification.
 - 3) All water, effluent and air emission test results will be compiled for review and analyses by Environmental Manager and approved by Head of HSE Department.
 - 4) All generated waste according to their classification and final disposal will be entered to waste management matrix for monthly report.
 - 5) The Environmental Executive will be implementing and monitoring within the project area, new infestation and according to BAP.

1.3 Health, Social and Environment (HSE) Department

Shwe Taung Cement Co., Ltd. established HSE Department and responsibility of HSE Department are as follows.

- 1) Implementation of Environmental Management Plans of approved EIA report of STM Cement Plant, Comply Rules and Regulations of Environmental Conservation, report Environmental Monitoring
- 2) Supervise third party stakeholders, contractors and other organizations for environmental monitoring program
- 3) Monitoring environmental impact and report the relevant documents
- 4) Promote the ability of employees by conducting knowledge sharing training and awareness on environmental conservation.

2. Environmental Performance Indicators and Monitoring Schedule

Physical, biological and social environmental management components of particular significance have been identified as performance indicators. A comprehensive monitoring plan for each performance indicator has been prepared for all phases of the Project, presented in Table 1.

This includes the parameters to be measured, methods to be utilized, sampling locations, frequency of measurements, detection limits and responsibilities for implementation and supervision.

Impact monitoring will be undertaken during the life of the Project to verify the predicted levels of residual impacts from the Project and the effectiveness of the various management plans and mitigation measures.

Shwe Taung Mining Co., Ltd. will prepare an environmental monitoring report and submit to the Ministry of Natural Resources and Environmental Conservation, MONREC in every six months as per the EIA Procedure requirements.

Table-1: Environmental Monitoring Program

Project Stage/ Component	Potential Impact	Parameters to be Monitored	Location	Measurements	Frequency	Responsibility
Operation / Mudstone Quarry	Inspection of mitigation compliance	General compliance with mitigation measures presented in the ESMP.	Project activity areas	Visual inspection of all active work areas and inspection of records	Weekly	HSE Team of Appointed Contractor and STM HSSE Department Head and Environmental Manager
Operation / Mudstone Quarry	Dust Impacts	Dust deposition	Cement Plant, Ku Pyin and Pyi Nyaung Villages	Dust deposition gauge	Monthly	STM HSSE Department Head and Environmental Manager
Operation / Mudstone Quarry	Discharge of treated wastewater and runoff.	Check compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for BOD, COD, TSS, oil and grease, pH, total coliform bacteria, total nitrogen, total phosphorus)	Sampling at: 1. Ku Pyin River, 2. Reservoir, and 3. Pyi Nyaung Village 4. Ye Shin Chaung creek 5. Mudstone runoff area	Standard analytical methods	Monthly	STM HSSE Department Head and Environmental Manager
Operation / Mudstone Quarry	Noise and vibration	Check compliance with noise levels specified in Myanmar National Environmental Quality (Emission) Guidelines (2015) for noise.	Ku Pyin Village and Pyi Nyaung Village	Standard analytical methods	Twice per year	STM HSSE Department Head and Environmental Manager
Operation / Mudstone Quarry	Soil and sediment	As per parameters in Section 5.5	At mudstone quarry run off area	Standard analytical methods	Twice per year	STM HSSE Department Head and Environmental Manager

3. Project Information

3.1 Project Location

The 165-acre mudstone quarry is located west of the STC cement plant (Figure 2). The concession to operate the mudstone quarry is renewed annually with the Forest Department since the concession was initially granted on 31 October 2013. An operating agreement for small-scale production of mineral was signed on 13 December 2017 with No. (1) Mining Enterprise of the Ministry of Natural Resources and Environmental Conservation (MONREC) for a five (5) year term. New medium-scale production of mineral was signed on 28 June 2023 with No. (1) Mining Enterprise of the Ministry of Natural Resources and Environmental Conservation (MONREC).

Legend O Village Second Line Transmission Line Planned Route Public Access Road between Pyi Nyaung & Cement Plant Public Bypass Road to Kubyin Village Cement Plant ubyin Village Employee Housing Base Camp Power Station Limestone Concession Mudstone Concession First Line Facilities Second Line Facilities

Figure -2: Location of STM Mudstone Quarry

Bi-Annual Environmental Monitoring Report

3.2 Project Description

Mudstone extraction is currently undertaken by open excavation approximately 500 m above sea level to provide raw material for the existing cement plant. The extracted mudstone is transported by truck to the cement plant, which requires 97,500 tonnes of mudstone per annum to meet the current production capacity. Expansion of the STC Cement Plant with a second kiln will require an additional 262,260 tonnes of mudstone per year bringing the total to 359,760 tonnes of required mudstone per year. The life of the mudstone quarry is estimated at around 55 years based on annual mining volumes of approximately 290,000 tonnes.

All land leased to date by the company is state-owned forest land. With the exception of a small amount of land to accommodate the new transmission line, no new land is required to accommodate the expanded facilities.

4. Environmental Monitoring Program

4.1 Dust Monitoring

Potential impacts to air quality in the vicinity of the mudstone quarry may arise from clearing and excavating of surface materials, bulldozing surface materials, drilling, blasting, loading and unloading haul trucks with mudstone and waste rock, vehicle movements over unpaved surfaces, wind erosion from mudstone and waste rock stockpiles. Major pollutants will be Dust, PM10 and PM2.5 which can affect the surrounding environment.

Dust deposition gauges have been installed in plant area, Kubyin and Pyi Nyaung Villages and STM monitored dust deposition with 6 points on surrounding area in plant site, quarries and plant accommodation area, Ku Pyin and Pyi Nyaung village.

4.1.1 Monitoring Result for Dust Deposition Monitoring

STM monitored dust deposition with 6 points at cement plant, housing/ accommodation area, Ku Pyin and Pyi Nyaung village. Water suppression was also undertaken on the roads by using the water from sedimentation ponds to mitigate dust emission on surrounding area in plant site, quarries and plant accommodation area. Please refer the Table 3 for dust deposition monitoring results from November 2024 to April 2025.

No	Monitoring Location	Latitude	Longitude
1	STM Accommodation (Ingyin Hostel)	20°51'23.1"N	96°23'34.7"E
2	STM Accommodation (55acres)	20°50'54.5"N	96°23'34.8"E
3	Ku Pyin (Behind Library)	20°53'26.9"N	96°23'24.8"E
4	Ku Pyin (Primary School)	20°53'25.7"N	96°23'33.6"E
5	Pyi Nyaung (Near Main Road)	20°49'09.5"N	96°23'50.9"E
6	Pyi Nyaung (Information Center)	20°49'03.9"N	96°23'40.6"E

Table-2: Monitoring Location

Bi-Annual Environmental Monitoring Report

Figure-3: Dust Deposition Monitoring

Table-3: Dust Deposition Monitoring results at Workers Accommodation, Ku Pyin and Pyi Nyaung villages from November 2024 to April 2025

Samplers: Nay Hlaing Oo	Dust Deposition Monitoring										
	Test Result										
Parameter	Australia & New Zealand Guideline (g/m2/Day)	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025				
STM Accommodation (Ingyin Hostel)		0.64	0.89	0.78	0.65	0.47	0.99				
STM Accommodation (55acres)		0.43	0.71	0.62	0.42	0.42	0.66				
Ku Pyin (Behind Library)	1,191	0.23	0.16	0.47	1.42	0.52	0.37				
Ku Pyin (Primary School)	(g/m2/Day)	0.39	1.58	0.34	0.51	0.40	0.32				
Pyi Nyaung (Near Main Road)		0.70	0.80	0.67	0.62	0.68	Damage				
Pyi Nyaung (Information Center)		0.42	0.43	0.35	0.64	Damage	1.23				

4.2 Ambient Air Monitoring4.2.1 Monitoring Location

Ambient Air Quality monitoring is measured with portable HAZ-SCANNER[™] EPAS device. Ambient air quality monitoring location had been selected by identifying potentially affected with consideration given to the prevailing wind conditions through Operation and Construction activities.

Table-4: Monitoring Location

No	Monitoring Location	Latitude	Longitude
1	AQ1_Worker Accommodation	20°50'56.15"N	96°23'35.97"E
2	AQ2_Ku Pyin Village	20°53'20.47"N	96°23'27.58"E
3	AQ3_Pyi Nyaung Village	20°49'4.58"N	96°23'40.42"E

Bi-Annual Environmental Monitoring Report

Figure-4: Ambient Air Quality Monitoring

Figure-5: Location Map of Ambient Air Monitoring at STM Mudstone

4.2.2 Monitoring Method

The portable HAZ-SCANNER[™] EPAS wireless environmental perimeter air station is easily deployed as an ambient air quality monitor to measure and document critical U.S. EPA criteria pollutants including nitrogen dioxide, sulfur dioxide, ozone, carbon dioxide, particulates, VOCs, and more. The EPAS provides direct readings in real time with data logging capabilities.

Web link: https://www.skcinc.com/catalog/pdf/instructions/EPAS%20manual%20v.3.1.pdf

4.2.3 Monitoring Result for Ambient Air Quality Monitoring

Table-5: Summary of Ambient Air Quality Monitoring at Worker Accommodation

Ambient Air Monitoring by Haz-scanner												
Machine Name: Haz	-scanner (E	PAS)		Operator: Nay Hlaing Oo								
		-,		Location	Worker	Accommo	dation					
			Test	Result								
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025			
Nitrogen dioxide		200	3.63	118.68	58.53	58.44	81.67	84.96	85.28			
Ozone		100	-	77.94	28.59	32.38	33.67	35.10	38.10			
PM10		50	-	5.27	63.28	49.34	117.34	122.60	92.39			
PM2.5	24 hours	25	-	2.08	4.78	5.32	6.21	6.71	9.04			
Sulphur dioxide		20	<dl< td=""><td>2.48</td><td>7.98</td><td>4.59</td><td>14.39</td><td>41.36</td><td>62.78</td></dl<>	2.48	7.98	4.59	14.39	41.36	62.78			
Carbon dioxide		ppm	-	0	7.79	6.29	134.18	141.72	46.55			
Carbon monoxide		10 ppm	-	0.10	0.07	0.09	0.24	0.35	0.35			

Table-6: Summary of Ambient Air Quality Monitoring at Pyi Nyaung village

	Ambient Air Monitoring by Haz-scanner												
Machine Name: Haz	-scanner (El	PAS)		Operator: Nay Hlaing Oo									
				Location	: Pyi Nyau	ing Villag	e						
		/HO / IFC deline				Test	Result						
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025				
Nitrogen dioxide		200	10.1	54.53	64.48	59.62	67.49	114.86	145.15				
Ozone		100	-	34.35	30.21	30.42	30.75	42.52	50.00				
PM10		50	76.3	43.74	51.86	84.13	160.95	135.58	Sensor Error				
PM2.5	24 hours	25	37.4	7.59	6.80	6.49	7.77	8.89	7.17				
Sulphur dioxide		20	<dl< td=""><td>16.60</td><td>10.95</td><td>31.68</td><td>75.51</td><td>119.34</td><td>33.97</td></dl<>	16.60	10.95	31.68	75.51	119.34	33.97				
Carbon dioxide		ppm	-	0.03	0.80	70.69	136.06	48.97	21.66				
Carbon monoxide		10 ppm	-	0.08	0.11	0.22	0.41	0.62	0.23				

Table-7: Summary of Ambient Air Quality Monitoring at Ku Pyin village

Ambient Air Monitoring by Haz-scanner												
Machine Name: Haz	-scanner (El			Operator: Nay Hlaing Oo								
		,		Location	: Ku Pyin	Village						
			Test	Result								
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025			
Nitrogen dioxide			200	10.3	83.30	67.18	63.51	73.08	87.93	111.15		
Ozone		100	-	48.19	33.82	32.06	35.69	33.53	48.11			
PM10		50	32.2	19	24.24	33.29	69.54	61.13	37.51			
PM2.5	24 hours	25	19.9	5.71	4.92	7.23	8.77	7.71	8.97			
Sulphur dioxide		20	<dl< th=""><th>19.93</th><th>6.14</th><th>8.92</th><th>24.57</th><th>43.93</th><th>54.30</th></dl<>	19.93	6.14	8.92	24.57	43.93	54.30			
Carbon dioxide		ppm	-	0.039	2.18	81.88	129.43	14.55	48.30			
Carbon monoxide		10 ppm	-	0.1	0.08	0.12	0.22	0.27	0.18			

*Note: This data submitted to ECD on a monthly basis

Ambient air quality results are attached in Appendix-C.

4.2.4 Air Quality Index

The HAZ-SCANNER[™], ambient air quality monitoring system, provides a comprehensive data of current air contaminants in a project location. Then, air monitoring data of pollutants is processed into a dimensionless unit called the "Air Quality Index" (AQI); it serves as an information medium for the people to know the air quality health of their location and takes preventative steps accordingly (public participation). As instructed from Meiktila ECD to HSE Department in September 2023, STM has updated this bi-annual monitoring report and verified with Meiktila ECD on the reporting format during last quarter of 2023. Meiktila ECD accepted the updated report during January 2023. Therefore, STM has updated the AQI results in all bi-annual monitoring reports.

The AQI is divided into six categories. Each category corresponds to a different level of health concern. Each category also has a specific color. Thus, the AQI is a beneficial tool for the company, public, stakeholders, and regulators to understand the current state of air quality. The color makes it easy for people to quickly determine whether air quality is reaching unhealthy levels in their communities.

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality					
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.					
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.					
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.					
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.					
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.					
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.					

Figure-6: AQI Basics for Ozone and Particle Pollution

Table-8: Summary of AQI at Plant Site from November 2024 to April 2025

	Air Quality Index (AQI)												
Machino Na	mo: Haz coa	nnor	Operat	Operator: Nay Hlaing Oo									
(EPAS)	Machine Name: Haz-scanner (EPAS)			Location: Worker Accommodation									
							AQI Re	sults					
Parameter	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group					
PM ₁₀	24 hour	ug/m3	5	55	45	82	84	69	People with respiratory disease are the group most at risk.				
PM _{2.5}	24 hour	ug/m3	11	26	29	34	37	50	People with respiratory or heart disease, the elderly and children are the groups most at risk.				
Carbon monoxide	8 hour	ppm	1	0	0	2	3	3	People with heart disease are the group most at risk.				
Ozone	8 hour	ppb	36	13	15	16	16	18	Children and people with asthma are the groups most at risk.				
Nitrogen dioxide	1 hour	ppb	61	29	29	41	42	42	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.				
Sulphur dioxide	1 hour	ppb	0	4	1	7	21	33	People with asthma are the group most at risk.				

Table-9: Summary of AQI at Pyi Nyaung Village November 2024 to April 2025

	Air Quality Index (AQI)												
Machina N		nnor	Operat	Operator: Nay Hlaing Oo									
Machine Name: Haz-scanner (EPAS)			Locatio	Location: Pyi Nyaung Village									
				AQI Results									
Parameter	Averaging Period	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group				
PM ₁₀	24 hour	ug/m3	40	47	65	103	91	Sensor Error	People with respiratory disease are the group most at risk.				
PM _{2.5}	24 hour	ug/m3	42	37	36	43	49	39	People with respiratory or heart disease, the elderly and children are the groups most at risk.				
Carbon monoxide	8 hour	ppm	0	1	2	5	7	2	People with heart disease are the group most at risk.				
Ozone	8 hour	ppb	16	14	14	14	19	23	Children and people with asthma are the groups most at risk.				
Nitrogen dioxide	1 hour	ppb	27	32	29	33	58	76	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.				
Sulphur dioxide	1 hour	ppb	9	6	17	40	62	17	People with asthma are the group most at risk.				

Table-10: Summary of AQI at Ku Pyin Village November 2024 to April 2025

	Air Quality Index (AQI)												
Maahina Na		nnor	Operat	Operator: Nay Hlaing Oo									
Machine Name: Haz-scanner (EPAS)			Locatio	Location: Ku Pyin Village									
							AQI Re	sults					
Parameter	Averaging Period	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group				
PM ₁₀	24 hour	ug/m3	18	22	31	58	54	34	People with respiratory disease are the group most at risk.				
PM _{2.5}	24 hour	ug/m3	32	27	40	48	43	49	People with respiratory or heart disease, the elderly and children are the groups most at risk.				
Carbon monoxide	8 hour	ppm	1	0	1	2	2	1	People with heart disease are the group most at risk.				
Ozone	8 hour	ppb	22	16	15	17	16	22	Children and people with asthma are the groups most at risk.				
Nitrogen dioxide	1 hour	ppb	42	33	31	36	43	56	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.				
Sulphur dioxide	1 hour	ppb	10	3	4	13	23	29	People with asthma are the group most at risk.				

4.2.5 Air Quality Mitigation Measures

Table-11: Air Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
	 Water suppression should be used on unpaved roads and work areas in dry and windy conditions; 	Water suppression are undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix A).	
Air Quality	 Drop heights during loading and transfer of materials should be minimized to no more than 0.5 m and shielded against the wind 	Completed and installed for line 1 and line 2 design	Image: state
Quanty	 Storage of dusty materials (i.e. stockpiles) should be enclosed or operated with efficient dust suppression measures; 	Implemented	
	 Stockpile heights should be kept to a minimum of no more than 3 m 	Implemented	
	 Regular cleaning of conveyor belt systems; 	Included in PME scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

Bi-Annual Environmental Monitoring Report

 1		
Crushed and blended raw materials should be stored in covered or closed bays;	Additional silo constructed in line 2	
 Pulverized coal should be stored in silos or closed storage; 	Implemented	
Clinker should be stored in covered or closed bays or silos with dust extractions;	Implemented	
 Routine plant maintenance to keep air leaks and spills to a minimum; 	Included in PME and PRD scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	Let l'er des derrectes Tradit and part of the first set
 Material handling processes including crushing operations, raw milling and clinker grinding should be undertaken in enclosed systems maintained under negative pressure by exhaust fans. Dust should be removed using cyclones and bag filters; and 	Equipped with cyclones and bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Implementation of automatic bag filling and handling systems; 	Implemented both line 1 and line 2	
 Use of electrostatic precipitators (ESPs) or fabric filter systems to collect and control fine suspended particulate emissions in the kiln gases; 	Installed (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
Use of cyclones to separate larger particulates of cooler gases followed by fabric filters and finally	Equipped with cyclones and bag filters line 1 and line 2 (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
Mild dust should be captured and recycled using fabric filters within the mill.	Equipped with bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

Bi-Annual Environmental Monitoring Report

4.2.6 Evaluation

Ambient Air monitoring was monthly tested at location of Sensitive Air Respecters such as Cement Plant Accommodation, and nearby villages which are Pyi Nyaung and Ku Pyin as in Cement Plant EIA report. All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015), except higher results of PM10 and SO2 during summer season. These increases are likely attributable to frequent forest fires initiated by some local villagers for land clearing, as well as slash-and-burn practices conducted by Forest Department for teak plantation management near the STC area.

Figure-7: Human activities affected the Ambient Air Quality around STM Mudstone Quarry

STM has investigated the reason of SO₂ result more than Myanmar National Environmental Quality (Emission) Guidelines (2015) as STC uses the low Sulphur content in coal that used as fuel for cement production as stated in STC Cement Plant EIA report. STM has analyzed the monitoring results from the portable HAZ-SCANNER[™] EPAS device and found out that SO₂ results were a lot higher during day time and less value at night time. This indicate that the plant is operating 24hours and it couldn't be less during night time.

AQI across the globe considers the number of pollutants (most of the developed countries and some developing countries considers PM 2.5 to measure the overall status of air quality being monitored), averaging time for which pollutants are measured, calculation method to compute air quality indices for each pollutant, calculation mode to aggregate the overall index, scale of an index, categories, color coding scheme, and related descriptive terms of the pollutants. There are many air quality index models to represent air quality level in the world. STM selected to assess ambient air quality results in Pyi Nyaung area based on AirNow, which is a partnership with the U.S. Environmental Protection Agency (EPA), color-coded index standards.

By analyzing all the AQI results, it is noted that PM 2.5 values are majorly impacted by human activities (forest firing & open burning, etc.) from surrounding environment. STM will raise the public awareness among Mudstone Quarry community and also disclosed these air quality monitoring results and AQI results at Pyi Nyaung Information Center and Ku Pyin library according to STM Stakeholder Engagement Plan.

Bi-Annual Environmental Monitoring Report

STM engaged 3rd party Environmental consultant as auditor and the auditor advised that this was the case as forest fires in the hills surrounding the plant were numerous at the time of the audit and consistent haze was present over the general area. The Auditor considered that the forest fires are contributing to elevated particulate readings being recorded by STM and elevated readings cannot be solely apportioned to emissions from Mudstone Quarry and associated facilities.

Therefore, STM was looking other factors that can be impacting on SO₂ results and found out that it was related to emission of mobile vehicles that were higher SO₂ than Kiln emission by using Testo PG-350 Portable Combustion and Emission Analyzer at STC Apache cement plant. There were a lot of heavy machineries and trailer trucks movement during day time and only trailer trucks movement during night time. So STM has raised awareness among the vehicle drivers to stop when they are parking or waiting, with sticker campaign "Turn Off Your Engine While Waiting or Parked" at Apache Cement plant.

These were a notable deterioration in regional air quality was found at Pyi Nyaung area. Moreover, cold air during the cold season can't hold as much moisture, and so the air is usually drier during winter. These habits were also noted on contributing factors of higher results of PM_{10} and $PM_{2.5}$.

Moreover, there were regular device servicing and maintenance with NANOVA, authorized supplier of Myanmar of EPAS device, in January and March 2020. STM noted the Haz-scanner EPAS SO2 sensor has some issue as the ambient air quality monitoring result of SO2 was complied with Myanmar National Environmental Quality (Emission) Guidelines (2015) after NANOVA, the local authorized support of Myanmar.

Carried out sensor checking, testing using zeroing filter and internal tube cleaning by supplier 3 times due to sensor error reading of Haz-scanner devices.

Water suppression are also undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix A).

Moreover, to safeguard occupational health, STM collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

SHWE TAUNG Building Materials

Figure – 8: Occupational Health Care Records by Social Security Board

Bi-Annual Environmental Monitoring Report

4.3 Water Quality Monitoring

Monitoring of water quality regularly is quite necessary for the assessment of water quality for beneficial purposes. Operation is dry process and do not generate wastewater. Sanitary wastewater from office and household are discharged to bio tank and treated wastewater are monitored in compliance with the NEQEG on BOD, COD, pH, SS, oil & grease, TN & TP and as per WHO Drinking water guidelines.

4.3.1 Monitoring Location

As per monitoring program, STM monthly monitor Ku Pyin and Pyi Nyaung Stream, Ye Shin Stream, Reservoir, Sedimentation Pond 5 and 6 for mudstone runoff area. Figure 9 and 10 show the location of Water Quality sampling points. The monitoring parameters are based on WHO Drinking Water Guidelines and IFC Effluent Discharge Standards, and include pH, color, turbidity, iron, BOD, COD, and other relevant indicators.

In accordance with the commitment outlined in approval letter, STM requires to monitor parameters including Arsenic, Cadmium, Chromium (VI), Copper, Cyanide (total, free, and weak acid dissociable), Iron (total), Lead, Mercury, Nickel, and Zinc in Mudstone Runoff Discharge and Ye Shin Stream on biannual basis. Therefore, STM has collected water samples from these locations and samples were submitted to an accredited external laboratory for analysis of the full range of required parameters. The test results will be incorporated into the upcoming Environmental Monitoring Report.

No	Sampling Location	Latitude	Longitude
1	Ku Pyin Stream	20°53'22.92"N	96°23'23.92"E
2	Pyi Nyaung Stream	20°49'23.18"N	96°23'46.25"E
3	Ye Shin Stream	20°50'24.08"N	96°23'26.81"E
4	Supply Water	20°51'35.3"N	96°23'37.7"E
5	Sedimentation Pond 5	20°52'10.60"N	96°23'16.67"E
6	Sedimentation Pond 6	20°51'47.52"N	96°23'25.02"E

Table-12: Sampling locations

4.3.1.1 Location Map of Water Quality Sampling Points

Figure-9: Overview Map of sampling point for Stream Water and Supply Water Quality

Bi-Annual Environmental Monitoring Report

Figure-10: Overview Map of sampling point for Sedimentation Pond Water Quality

Figure-11: Water Quality Sampling Record

4.3.2 Monitoring Result for Water Quality

Table-13: Ku Pyin Stream Water Quality Monitoring Result

		Ku Py	in Stream W	ater Anal	ysis				
ITEM	WHO Drinking Water Guideline	EQEG Guideline	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6.5 - 8.5	6 - 9	6.3	8.3	7.4	7.9			7.4
Color	15 PCU	-	-	5	0	0			5
Turbidity	5 NTU	-	-	0.48	1.18	2.25			2.11
Calcium hardness	500 mg/l	-	-	*	*	*	No Water	No Water	*
Chloride (Cl)	250 mg/l	-	-	*	*	*	vvater	water	*
Sulphate (SO4)	200 mg/l	-	-	10	10	10	1		10
TSS	50 mg/l	50 mg/l	23	1	0	6	1		6
Nitrate	50 mg/l	-	-	11.9	8.1	9.3	1		4
Remark: According to the we express as "*" for "No		•	issue to buy sor	ne chemical ı	reagent to ana	alyze some w	ater quality p	arameters. T	herefore,

Table-14: Pyi Nyaung Stream Water Quality Monitoring Result

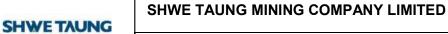

ITEM	WHO Drinking Water Guideline	EQEG Guideline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6.5 - 8.5	6 - 9	8	7.1	7.8	7.3	7.7	7.2
Color	15 PCU	-	0	0	0	5	20	5
Turbidity	5 NTU	-	3.41	2.06	0.71	0.6	0.85	0.83
Calcium hardness	500 mg/l	-	*	*	*	*	*	*
Chloride (Cl)	250 mg/l	-	*	*	*	*	*	*
Sulphate (SO4)	200 mg/l	-	20	10	10	20	10	10
TSS	50 mg/l	50 mg/l	12	3	2	2	1	3
Nitrate	50 mg/l	-	6.3	4.2	9.9	3.3	11.8	5.2

Table-15: Ye Shin Stream Water Quality Monitoring Result

ITEM	WHO Drinking Water Guideline	EQEG Guideline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6.5 - 8.5	6 - 9	8	7.5				7.5
Color	15 PCU	-	15	15	1			10
Turbidity	5 NTU	-	2.15	10				1.94
Calcium hardness	500 mg/l	-	*	*	No	No	No	*
Chloride (CI)	250 mg/l	-	*	*	Water	Water	Water	*
Sulphate (SO4)	200 mg/l	-	20	10				20
TSS	50 mg/l	50 mg/l	6	26	1			6
Nitrate	50 mg/l	-	1.6	6.8	1			5.3

Table-16: Lower Reservoir Water Quality Monitoring Result

	Lower Reservoir Supply Water Analysis									
ITEM	WHO Drinking Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	
рН	6.5 - 8.5	6 - 9	7.6	8.2	7.5	7.4	7.7	8.6	7.6	
Color	15 PCU	-	-	20	20	20	35	55	30	
Turbidity	5 NTU	-	-	2.8	4.31	5.56	5.22	10.9	2.13	

Turbidity	5 NTU	-	-	2.8	4.31	5.56	5.22	10.9	2.13
Calcium	F00 m m/l			*	*	*	*	*	*
hardness	500 mg/l	-	-						
Chloride (CI)	250 mg/l	-	-	*	*	*	*	*	*
Sulphate (SO4)	200 mg/l	-	-	10	20	20	10	10	10
TSS	50 mg/l	50 mg/l	11	11	16	15	17	43	31
Nitrate	50 mg/l	-	-	4.9	4.7	3.6	4.8	13.5	6

Lower reservoir supply water test results from external laboratories are attached in Appendix-(B-5).

Table-17: Sedimentation Pond-5 Surface Water Test Result

	Sedim	entation P	ond 5 Surfa	ce Water	Test Res	ult			
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6~9	6~9	7.6	8.2	7.5	7.4	7	7.2	7.5
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	41.5	*	*	*	*	*	*
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	6.5	*	*	*	*	*	*
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	215.5	35	15	46	23	25	36
Total Nitrogen	10 mg/l	10 mg/l	1.7	2.03	1.94	0.65	0.86	2.09	1.2
Total Nitrate	44.29 mg/l	-	-	9	8.6	2.9	3.8	9.3	5.3
Total Phosphorous	2 mg/l	2	0.06	0.2	0.3	0.2	-	-	-
Oil and grease	10 mg/l	10 mg/l	DL	*	*	*	*	*	*
Total Coliform Bacteria	-	100 ml	45.50	*	*	*	*	*	*

we express as "*" for "No stock of chemical reagents"

Building Materials

Table-18: Sedimentation Pond 6 Surface Water Test Result

	Sedim	entation P	ond 6 Surfa	ce Water	Test Res	ult			
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6~9	6~9	5.6	9.5	8.8	8.6	8	8.4	8.2
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	2.5	*	*	*	*	*	*
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	1	*	*	*	*	*	*
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	9	167	131	128	8.4	44	57
Total Nitrogen	10 mg/l	10 mg/l	0.3	2.21	ND	2.33	Can't Test	2.15	0.72
Total Nitrate	44.29 mg/l	-	-	9.8	ND	10.3	Can't Test	9.5	3.2
Total Phosphorous	2 mg/l	2	0.01	0	*	0.0	*	*	*
Oil and grease	10 mg/l	10 mg/l	DL	*	*	*	*	*	*
Total Coliform Bacteria	-	100 ml	ND	*	*	*	*	*	*

we express as "*" for "No stock of chemical reagents"

* Not for drinking water. No effect for Health & Environment.

* STM has tested the surface water quality from the sedimentation ponds for using water with water truck to suppress dust around the cement plant and quarry sites. Laboratory results for water quality are attached in Appendix-B.

Bi-Annual Environmental Monitoring Report

4.3.3 Water Quality Mitigation Measures

Table-19: Water Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
Surface Water Quality	 Implementing storm water management practices to manage the flow of storm-water, prevent uncontrolled migration and minimize erosion and sediment transport from project facilities and disturbed areas. Construction of a dedicated drainage network to intercept and diversion runoff; 	Constructed stormwater drains around the cement plant channel to sedimentation ponds	
county			Give the set of the se
	 Divert runoff from the mudstone quarry to an appropriately sized and maintained sedimentation pond to allow adequate retention time for suspended solids to settle; 	Constructed sedimentation pond dual stage.	Sed retraining on hori stam was it and to also adouted reterition that fit supported addits to an iterative fits a state of the set
	Divert sus off from the lineasters sugar, to the	Constructed	Image: Sector
	 Divert runoff from the limestone quarry to the wetland created by STM via a weir to remove suspended solids before entering the wetland; 	sedimentation pond dual stage.	Cedit Cedit Paper 17: Deningy Jje cedening yer
	 Baffles or other measures to reduce the velocity of runoff downhill slopes should be installed to minimize scouring; 	Visual monitoring by MNE	Figure (1) Zoning for sloper protection in missanes

Bi-Annual Environmental Monitoring Report

 Exposed areas and overburden dumps should be revegetated as quickly as possible. 	Tree planting during monsoon season	
 STM will prepare and implement a Storm water Management Plan considering the mitigation committed above. 	Plan have been developed and construction on progress for Line 2 area. Line 1 area was constructed since 2014.	Figure 1 frames
 All areas used to store and/or handle coal, laterite and limestone should be paved and surrounded by perimeter drains. For the coal storage area, it should be covered; 	Implemented and covered during monsoon season	In frant of 201 Ares Area Ar
 Runoff from the laterite and limestone staging areas shall be diverted to retention ponds and may be used for greening, dust suppression or discharged to the onsite reservoir. 	Constructed sedimentation pond dual stage and reuse for gardening and dust control.	
 For the coal storage area, STM has agreed to cover this area. Water from the roof will be diverted via storm water drains to retention ponds and may be used for greening, dust suppression or discharged to the onsite reservoir. Runoff collected by the interceptor drains (small volume) within the covered coal storage area will be diverted for treatment at the wastewater treatment plant. 	Upgraded sedimentation pond near coal storage area.	

Bi-Annual Environmental Monitoring Report

 Discharges into the residischarged to surface a monitored monthly for Myanmar National Env (Emissions) Guidelines wastewater discharges grease, pH). 	streams should be compliance with rironmental Quality s for site runoff and	Conducted and monitored by LQC result documented (See in 4.3.2 water result)	<image/> <image/> <section-header></section-header>
Lightning protection sh areas used to store bu flammables;		Installed at fuel depot.	Contraction build insolution will contain the 11/27/07/14 volume of space from and estinged with of water segment installer lighting providen post
The fuel storage facility constructed on bunded containment sufficient volume of the single la	l hardstand with for 110% of the	Equipped.	Constructed handland with containment for 11% of the volume of stands field and reapped with of-water separate. Instability lighting protection pole.
Discharges from this b pass through an oil-wa		Installed	Contraction of the state of the
Spill Response Plan si and implemented; (cor training and deliver par employees in the plant	nducted awareness mphlet to relevant	Approved and implemented	<text><text><text><text><text><text><text><text><list-item></list-item></text></text></text></text></text></text></text></text>
 Discharges from the construction of the second should be monitored minimum with Myanmar Nationa Quality (Emissions) Guand wastewater dischargrease, pH). 	nonthly for compliance I Environmental uidelines for site runoff	Conducted and monitored by LQC result documented (See in Section 4.3.2 for water test result)	<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

Bi-Annual Environmental Monitoring Report

 Sanitary wastewater (includes toilet, sink, shower) should be discharged to the wastewater treatment plant and not be directly discharged to any water bodies. Kitchen flows should be discharged for treatment at dedicated grease trap / water purification unit and not be directly discharged to any water bodies. 	Constructed Bio Tank for treatment of sanitary wastewater.	
 Treated wastewater will be monitored monthly at the centralized treated wastewater tank to check compliance with the NEQEG on BOD, COD, pH, SS, oil and grease, TN, TP and residual chlorine and monitored annually for compliance with the full list of parameters on the NEQEQ for Wastewater, Storm Water Runoff, Effluent and Sanitary Discharges (General Application). Sludge generated from the wastewater treatment units will be dewatered to meet with the Myanmar NEQEG for Bio solids and Sludge Disposal before disposal to the non-hazardous solid waste management facility. Sludge samples from each modular tank will be checked yearly for compliance with the NEQEG for Bio solids and Sludge Disposal. 	Conducted and monitored by LQC result documented (See Section 3.2.2 for water result)	(See Section 4.3.2 for water result)

*Data from Environment shared google drive

Notice: Presently all the discharge from bund wall areas directly channel to sedimentation pond.

4.3.4 Evaluation

At mudstone quarry site, stormwater management practices are in place to control surface runoff, prevent uncontrolled discharge, and reduce erosion and sediment transport from project facilities and disturbed areas. A dedicated drainage network has been constructed to intercept and divert runoff, including diversion of runoff from the mudstone quarry to a properly sized and maintained sedimentation pond, ensuring sufficient retention time for suspended solids to settle before discharge.

Sanitary wastewater generated from the plant office and staff accommodations is directed to biotanks for treatment prior to discharge. Monthly water quality monitoring is conducted at Ku Pyin, Pyi Nyaung, Ye Shin Stream and the plant's reservoir to ensure compliance with the World Health Organization (WHO) drinking water guidelines and the Myanmar National Environmental Quality (Emission) Guidelines (NEQEG) – General Application. In addition, surface water samples from sedimentation ponds are also monitored monthly in accordance with NEQEG standards and compared with baseline data. Elevated levels of Total Suspended Solids (TSS) are occasionally observed during the dry seasons (winter and summer), which may be attributed to reduced water flow rates during these periods.

4.4 Noise Monitoring

The nearest representative noise sensitive receptors (NSRs) that may potentially affect by the noise impact due to the Project are identified as Pyi Nyaung and Ku Pyin villages. STM operate noise monitoring twice a year in accordance with Mudstone Environmental Monitoring Plan and results are shown in Table 20 below:

4.4.1 Location Map of Noise Quality Monitoring Points

Figure-12: Noise Quality Sampling Points

Table - 20: Noise Monitoring Locations

No	Noise Monitoring Location	Latitude	Longitude
1	Ku Pyin Village	20°53'20.47"N	96°23'27.58"E
2	Pyi Nyaung Village	20°49'4.58"N	96°23'40.42"E

	Machine Name: GM1356-0/GM1356, Operator: Nay Hlaing Oo				
Noise Monitoring	Ku Pyin	Village	Pyi Nyaung Village		
	Day	Night	Day	Night	
Monitoring Result	48	41	53	43	
NEQEG (Residential)	55	45	55	45	
NEQEG (Industrial)	70	70	70	70	

Table-21: Noise Monitoring Results in Pyi Nyaung and Ku Pyin villages

4.4.2 Evaluation

Noise monitoring was conducted at Ku Pyin and Pyi Nyaung Village using a calibrated Sound Level Meter (Model: GM1356-0/GM1356). The monitoring aimed to assess compliance with the Myanmar National Environmental Quality (Emission) Guidelines for both residential and industrial areas. All measured values were within the NEQEG limits for residential areas, and significantly lower than the limits for industrial areas. These results indicate that the current noise levels at the selected monitoring locations do not pose a significant impact on the surrounding communities and remain compliant with national environmental standards.

Bi-Annual Environmental Monitoring Report

4.5 Soil Quality Monitoring

In accordance with the commitment outlined in approval letter, STM requires to monitor parameters including pH, Moisture Content (dried @ 103°C), Electrical Conductivity, Cadmium, Copper, Lead, Zinc and Iron at mudstone runoff area on biannual basis. Therefore, STM has collected soil samples from that area and Ku Pyin village, and samples were submitted to Department of Agriculture (Land Use) laboratory for analysis of the full parameters. The locations for soil sampling are provided in Figure 13. The test results will be incorporated into the upcoming Environmental Monitoring Report.

Soil quality monitoring was undertaken in April 2023 in Ku Pyin village. Two soil samples were taken at each sampling location These samples were sent to the laboratory analyzed by Department of Agriculture (Land Use), Ministry of Agriculture, Livestock and Irrigation (MOALI). Parameters measured included Moisture, pH, Electrical Conductivity, Organic Carbon, Humus, Total Nitrogen, Ca²⁺, Mg²⁺, K⁺, P, K₂O, Water Soluble SO₄²⁻. Soil quality monitoring results for laboratory analyzed parameters are shown in Table 22.

4.5.1 Location Map of Soil Quality Monitoring Points

Figure-13: Soil Quality Sampling Points

Table – 22: Soil Monitoring Results in Ku Pyin village

Parameter	Unit	Baseline	Sample A	Sample B	Sample C	Sample D	Sample E	Remark
Moisture %	%	14.6	3.13	2.23	2.64	4.99	2.65	
рН	pН	6.6	7.12	6.90	7.28	7.99	6.66	
Electrical Conductivity	dm/s	0.77	0.08	0.06	0.09	0.15	0.06	
Organic Carbon%	%	1.62	1.37	1.04	1.89	1.98	1.25	
Humus	%	-	2.36	1.79	3.25	3.41	2.15	
Total N%	%	-	0.108	0.107	0.107	0.165	0.107	
Ca ²⁺	Meq/100gm	-	14.43	9.53	13.68	22.43	15.06	
Mg ²⁺	Meq/100gm	-	2.75	0.68	1.37	1.40	2.74	
K⁺	Meq/100gm	-	0.54	0.41	0.43	0.47	0.41	
Р	ppm	-	0.41	0.41	0.41	0.42	0.41	
K ₂ O	mg/100gm	-	25.39	19.02	20.33	22.11	19.12	
Water Soluble SO4 ²⁻		-	0.04	0.08	0.08	ND	0.04	

Bi-Annual Environmental Monitoring Report

4.5.2 Evaluation

Agronomist stated that the current outcomes are satisfactory and that it would be beneficial for STM to implement small-scale plantations in the Ku Pyin area if STM can demonstrate the success of planting as a model plantation. He then responded that all test results have been reliable for at least a year.

4.6 Waste Management Monitoring

4.6.1 Generation of Non- Hazardous Waste

In Shwe Taung Cement Factory, collect non-hazardous waste generated from plant site and accommodation area every day and dispose them to Temporary Non-hazardous Storage Area. For kitchen wastes, compost or use as animal feed in nearby villages. On the other hand, dispose laboratory and clinical wastes to Meikhtila Incinerator, Meikhtila District, Mandalay Region, approved by Meikhtila City Development Committee and have plan to dispose hazardous wastes to Golden Dowa Eco-system Myanmar Co., Ltd., Accredited Waste Management Company. Figure 14, 15 and 16 show location map of waste disposal area and waste collection points.

Figure-14: Location Map of Collection Points of All Generated Wastes from Plant Site and Accommodation Area

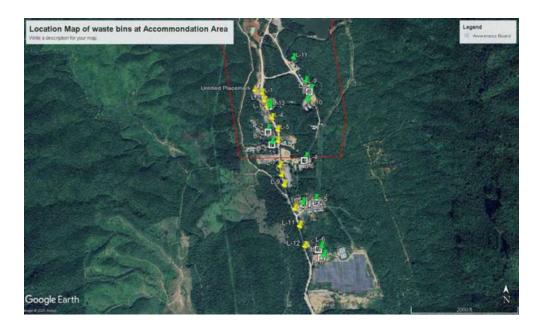


Figure-15: Location Map of Disposal Sites for Waste from Plant and Accommodation Area

Figure-16: Location Map of Site Waste Dumping Area (Scrap Yard)

Table-23: Generated Non-Hazardous Waste

STC N	STC Non-hazardous Waste Generated from November 2024 to April 2025					
Month	Generated Waste (kg)	Reduction waste (kg)	Landfill Waste (kg)	Remark		
November 2024	16,880	4,246	12,634			
December 2024	16,920	4,246	12,674	Disposed to		
January 2025	20,620	4,246	16,374	Temporary Non-		
February 2025	14,240	4,246	9,994	hazardous Solid Waste		
March 2025	16,540	4,246	12,294	Storage Area		
April 2025	12,220	4,246	16,466			

4.6.2 Generation of Hazardous Waste

Table-24: Generated Hazardous Waste

	STM Generated Hazardous Waste						
Sr.	Date	Type of Waste	Quantity	Amount (kg)	Treatment Facility	Remarks	
1	9 January 2025	Clinical, Laboratory and Contaminated Oil rags	-	760 kg	Meikhtila Municipal Incinerator	Disposal	

4.6.3 Waste Management Mitigation Measures

Table-25: Waste Management Mitigation Measures

Affected Aspect	Mitigation Measures	Action Taken	Photos
Waste Managem ent	A waste management plan (WMP) for the project has been developed that include the following as a minimum:	Approved waste management plan	Percent The Manual Intervent (a) in the intervent of investige products Image: Section 1 Image: Section 1

Bi-Annual Environmental Monitoring Report

A waste inventory should created to establish the types of wastes;	(dispose Non-hazardous waste to Temporary N-H Solid Waste Storage area whereas Hazardoous waste will be disposed to DOWA, accredited waste management company. Clinical and Laboratory waste are disposed to Meikhtila Incinerator, approved for disposal by Meikhtila City Development Committee)	<image/>
 Identify disposal routes (including transport option and disposal sites) for all wastes generated; 	point and disposal site)	No. 1 Historic Wonge?
Segregate wastes and recycle wherever possib	Segregated scrap materials for resale and reuse (See Figure-13 for Scrap Yard Area)	
Hazardous wastes shou be segregated and dispose separately from non- hazardous wastes using license contractor;	and non-hazardous waste, municipal waste disposed at Temporary Non-	BARK TALLON BARK VARIAN Samsgraff gjels ggleftig yelnigt (1.110) Samsgraff gjels ggleftig yelnigt (1.110) Samsgraff gjels ggleftig yelnigt (1.110) Samsgraff gjels ggleftig (1.110) Samsgraf
Hazardous wastes shall I labelled and stored in sea containers that are stored bunded hardstand. Hazardous wastes that ar unsuitable for disposal in cement kiln (such as wast oil drums) shall be returne the manufacturer or truck to Mandalay for appropria disposal at a hazardous waste facility;	iled deposed to dispose to Meikthila on Incinerator, approved by Meikhtila City Development Committee. the tee ed to ed	

Bi-Annual Environmental Monitoring Report

Waste oil should be used fi kiln start-up;	or Resale by ADM	
Organic waste for composting or use as anima feed in nearby villages;	Organic waste (vegetables waste) are collected and composed to use as a fertilizer. Organic waste (food waste) are collected by locals for as animal feed	
Waste suitable for use as fuel in the Mudstone Quarry should be considered; and	Used waste oil resale to local merchant	
The existing landfill is not lined and should be only used for inert (non-reactiv and non-hazardous waste only.	Implemented (Constructed Old Temporary Non- hazardous solid storage area for disposing Non-hazardous waste and operated it from 2012 to June 2019. Replantation in old place after closure. After inspection of New Temporary Non- hazardous solid storage area from ECD and governmental organizations in 5 July 2019, operate that one until now.)	

4.6.4 Evaluation

Implementing principles of the waste hierarchy in the most responsible manner (reduce, reuse, recycle, reclaim, dispose) in the plant site by conducting tool box talk, delivering pamphlet, offering waste bin in each plant site department and accommodation area, undertaking simultaneous mass housekeeping 9 campaigns occasionally, using waste manifest form, daily conducting housekeeping in the site and surrounding area to get awareness on waste reduction, segregation, collection and disposal practices that avoid impacts on the physical, biophysical and social environments.

Bi-Annual Environmental Monitoring Report

5. Biodiversity Action Plan Implementation

STC is continuous implementing Biodiversity Action Plan (BAP) with regular Transect Survey, Invasive Survey, Wildlife Market Survey, maintaining the Ecosystem Restoration Plantations and 3 nurseries, and raising biodiversity conservation activities around the Limestone and Mudstone Quarry operation.

5.1 Transact Survey

A transact survey was carried out in the limestone quarry area of the cement plant as part of the environmental monitoring program, with a focus on assessing local biodiversity and habitat conditions. The survey was conducted along predefined transect lines across disturbed and undisturbed areas surrounding the quarry. One of the key observations during the survey was the presence of migratory bird species utilizing the area as a seasonal stopover or feeding ground, indicating that the habitat remains in relatively good ecological condition. Their presence suggests minimal impact from quarry operations and highlights the need for continued implementation of the Biodiversity Action Plan (BAP) to preserve and enhance habitat quality.

Figure – 17: Migratory Birds Records from Transact Survey

Black Hooded Oriole

Greenish warbler

Black-winged Cuckoo shrike

Blue Rock Thrush

Grey Headed Paraket

Red Vented Bulbul

Table – 2	6 [.] Wildlife	Records	from	Transact Survey
	o. wwinding	1000100	nom	nunduot ourvoy

No.	Common Name	Scientific Name	Family	IUCN Status (version 2024-2)	Types of Occurrence
1	Black Hooded Oriole	Oriolus xanthornus	Oriolidae	Least Concern	Rest
2	Blue Rock Thrush	Monticola solitarius	Muscicapidae	Least Concern	Rest
3	Greenish warbler	Phylloscopus trochiloides	Phylloscopidae	Least Concern	Rest
4	Grey Headed Paraket	Psittacula finschii	Psittaculidae	Near Threatened	Rest
5	Lineated Barbet	Psilopogon lineatus	Megalaimidae	Least Concern	Rest
6	Red Vented Bulbul	Pycnonotus cafer	Pycnonotidae	Least Concern	Rest
7	Black-winged Cuckooshrike	Lalage melaschistos	Campephagidae	Least Concern	Feeding
8	Red Muntjac	Muntiacus muntjak	Cervidae	Least Concern	Feces

5.2 Ecosystem Restoration Plantations

STM has successfully implemented an ecosystem restoration initiative by establishing plantations for land leased agreement with the government since 2016. The maintenance of these plantations is diligently carried out through routine operations, including weeding, patching, and fire protection across all areas.

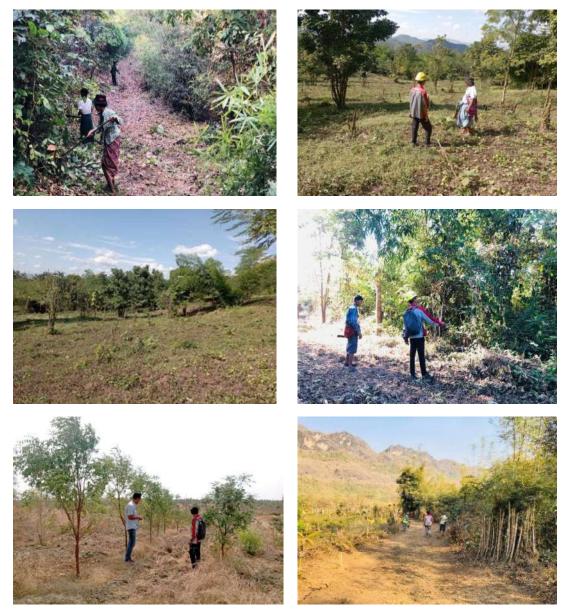
Table-27: Ecosystem Restoration Plantation List by years

No.	Year	Acre	No. of trees	Remark
1	2016	33	17820	
2	2017	15	5950	
3	2018	50	60500	
4	2019	115	50100	
5	2020	150	81100	
6	2021	150	81100	
7	2023	65	35100	
	2024 (Total)	578	331670	

Table-28: Maintenance of Ecosystem Restoration Plantations (ERP)

	Particular	Patched Area	Nov 2024	Dec 2024	Jan 2025	Feb 2025	March 2025	Apr 2025
Location			-	3rd Weeding	Weeding for Fire Protection	Road Clearing for Fire Protection	Fire Protection Activities	Fire Protection Activities
Near Apache	ERP 33 Ac	7 Ac	-	7 Ac	7 Ac	7 Ac	-	-
Near Apache	ERP 65 Ac	33 Ac	-	33 Ac	33 Ac	33 Ac	-	-
South Pyi Nyaung	ERP 100 Ac	16 Ac	-	16 Ac	16 Ac	16 Ac	16 Ac	Protection Activities - 16 Ac 9 Ac 25 Ac
South Fyl Nyaung	ERP 100 AC	9 Ac	-	9 Ac	9 Ac	9 Ac	9 Ac	9 Ac
Wundwin	ERP 25 Ac	25 Ac	-	25 Ac	25 Ac	25 Ac	25 Ac	25 Ac
Mahlaing	ERP 40 Ac	40 Ac	-	40 Ac	40 Ac	40 Ac	40 Ac	40 Ac

During the reporting period from November 2024 to April 2025, ecosystem restoration plantations (ERP) were maintained and protected through scheduled weeding and fire prevention activities across various locations. At the Apache site, a total of 40 acres underwent third weeding in December, followed by repeated fire protection activities from January to February. In South Pyi Nyaung, 100-acre ERP site received consistent maintenance, with fire protection measures conducted monthly from January through April. Similarly, the ERP site in Wundwin (25 acres) and Mahlaing (40 acres) were consistently managed throughout the reporting period, with weeding and fire protection actions conducted from December onward.



Bi-Annual Environmental Monitoring Report

These activities contributed to the ongoing preservation and resilience of restored ecosystems in areas impacted by quarry operations.

Figure – 18: Maintenance activities at Ecosystem Restoration Plantations

STM took zero burning practice in all plantation to protect carbon emission from our activities. It may lead to develop slow growth of some species such as Kyun and Myanmar Kokko. The grow rate of Sein Pan is the best growth rate that average is about 7 ft in South Pyi Nyaung plantation. Mazili grow rate is the best in plantation 65 acre near cement plant. Padauk was damage due to domestic buffalo from near village. STM will mitigate to get better growth rate plantation in next year by changing of planting pattern, selection of species, preparation of soil before planting.

STM has operated fire protection roads for all patched area in ecosystem restoration plantations to protect forest fire in summer season. STM use local contractors to give job opportunity from our activities.

regularly.

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

5.3 Biodiversity Awareness Training

STM conducted in-house training sessions on the Biodiversity Policy and Action Plan for new employees, as well as biodiversity awareness programs for local communities, particularly children, in Ku Pyin and Pyi Nyaung Villages. These programs aimed to enhance understanding of local wildlife species found in and around the STC and STM project areas. As part of the awareness activities, a coloring contest was organized for children, with awards presented to outstanding participants. The children actively engaged in the program, contributing to its success and fostering greater appreciation for biodiversity conservation.

Ligura	17.	Diadiv	a roite	Auronooo	Training	Deserde
ridule –	11.	DIOUIVE	JISILV.	Awareness	riaminu	Records
					· · • • · · · · · · · · · · · · · · · ·	

Biodiversity Polices & Action Plan Training to All STBM New Employees

Training Title	Biodiversity Polices & Action Plan (Annual Training)
Trainer	Naing Htay Linn (Environmental Executive)
Number of Training	3 Times
Date	12, 13 December 2024
Number of Attendance	81 persons
Status of Completed	Completed 76 persons among 81 persons (93 % Completed)
Trained Dept	ADM, BDD, , CPP, ELE, F&A, FME, HME, HRD, HSE, LGS, LQC, MNE, PCM, PME, PRD, SLE, WHS
Training Location	Main Office, Training Room

- To aware the STC's Biodiversity Action Plan and Biodiversity Policies

- To raise awareness continuously for the conservation of forest, biodiversity (flora and fauna) and surrounding environment areas;

To encourage local people and staffs not to conduct illegal logging activities and poaching.
 To monitor signs of potential wildlife conflict, illegal logging and poaching at project area

93 % Trained Person Remaining Person

Biodiversity Polices & Action Plan Training 7 %

Awareness Raising Training At Pyi Nyaung Village & Ku Pyin Village

Title		ra (Ophlophagus hannah) Competition	Awareness for Shan State Langur (Trachypithecus phayrei spp. shanicus) & Coloration Competition		
Date	Conducted on 21 th Jan 2025	Conducted on 5 th February 2025	Conducted on 26 th March 2025	Conducted on 28 th April 2025	
Audience	Grade – 1 Students (Male-16/Female-12)	Grade – 1 Students (Male-14/ Female-14)	Grade – 2, 3, 4 Students (Male-15/Female-5)	Grade - 1, 2, 3, 4 & 5 Students (Ma 5) 11/Female-15)	
Location	At Ku Pyin Village – Basic Education Middle Branch School	At Pyi Nyaung Village – Information Center & Ubrary	At Ku Pyin Village – Monastery	At Pyi Nyaung Village – Information Center & Library	
Records Event Pho Awarene Vinyl Boa	55		A started started with the started sta		

6. Corporate Social Responsibility

STM Mudstone Quarry implements Corporate Social Responsibility (CSR) to communities and release newsletter in quarterly, see in Appendix-D.

Bi-Annual Environmental Monitoring Report

7. Occupational Health and Safety

Workers are at risk of occupational health and safety incidents. Such incidents may be linked to the physical environment in which they operate, the procedures they have to abide by or the on-site health and safety culture.

Shwe Taung has existing occupational health and safety policies and procedures in place at the mudstone quarry and these are applicable for the expansion project. These procedures include requirements in terms of operational safety (blasting, excavator, ladder, crane and forklift management, working at height, personal protective equipment use, lifting operation, emergency management, etc.). With the support of the IFC, STM has retained international consultants to assist with the review, update and implementation of its occupational health and safety procedures.

Generally, there is one to two daytime blasting occurred at mudstone quarry within two to three months. Blasting is thus infrequent and will be managed under the Standard Operating Procedure (SOP) for blasting and excavation to ensure safety of staff and community.

7.1 Fire Safety Measures

In compliance with the directives of the Myanmar Fire Services Department, STM has implemented a series of fire safety measures to mitigate fire hazards in the workplace. These measures include conducting regular fire drills and maintaining firefighting equipment.

The main objective of regular fire drills is to ensure all staff are familiar with fire safety protocols and the use of firefighting equipment. Training were conducted to familiarize staff with the operation of a fire truck in case of an emergency. Moreover, all employees were trained on the correct procedures to follow upon hearing the fire alarm. This includes how to safely evacuate to the nearest assembly area within a short timeframe. Staff were also trained to identify and use firefighting facilities such as fire hydrants, fire extinguishers, and other related equipment. Activities during the drill were meticulously documented, and photographs were taken to provide a visual record of the procedures and participation. Please see the updated "Emergency Preparedness Fire Drill Exercise Reports" in "Appendix – E".

7.2 Occupational Hazard Prevention and First Aid Training

Ensuring the safety and well-being of our employees is paramount. STM conducts comprehensive training programs focused on occupational hazard prevention and first aid. These programs are meticulously documented with detailed procedures and photographic evidence to uphold high standards of health and safety compliance.

OHS training at STM encompasses a broad spectrum of critical safety topics. Employees receive training on energy isolation to prevent accidental startups, and on confined space and rescue equipment to ensure safe operations in restricted areas. Office safety training covers best practices for maintaining a safe work environment, while working at height training emphasizes the use of proper safety measures and equipment. Training for riggers and signalmen ensures safe rigging practices and effective communication during lifting operations. Hot work training covers procedures and precautions for tasks involving open flames or heat, and safety inductions provide new employees with essential safety knowledge.

Additional training includes belt conveyor guarding and machine cover to enhance machinery safety, first aid for immediate response to injuries, and scaffolding safety for the proper erection and use of scaffolds. Programs such as "Take 2 Minutes" encourage employees to assess risks before starting tasks, and safety interaction and observation promote proactive safety discussions. Electrical safety training addresses procedures for working with electrical systems, while manual handling training teaches proper techniques to prevent injuries. Risk management training focuses on identifying, assessing, and mitigating workplace risks.

Internally, STM conduct annual employee safety inductions to refresh safety protocols, permit to work training to ensure understanding of the permit system for hazardous tasks, and safe work procedure training. Risk assessment training is provided to develop techniques for evaluating and mitigating risks. Lototo (Lock Out, Tag Out, Try Out) training ensures the safe de-energization of equipment, and specific

Bi-Annual Environmental Monitoring Report

electrical training addresses managing electrical hazards. Regular office safety training and fire drills are also conducted to reinforce these practices.

A key component of STM's training is first aid. First aid training program equips employees with the skills necessary to provide immediate assistance in the event of an injury or health emergency. This includes basic first aid techniques, CPR, and the use of first aid equipment. Employees learn how to respond to a variety of medical situations, ensuring that they are prepared to act swiftly and effectively. This training is crucial in minimizing the impact of workplace injuries and can be life-saving in critical situations. Moreover, to safeguard occupational health, STM collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

Figure –19: OHS, First Aid Trainings Records and Medical check-ups from Social Security Board using Mobile Medical Unit

SHWE TAUNG Building Materials

အထကဲအကျောင်းအရာမက်ခံမှနှင့်လေသူ၍ ရည်ညွှန်မတ်ဆာရ မန္တလေးတိုင်အသက္ကြံ။ သာစည်မြို့နယ်ရှိ၊ ရွှေတောင်ကုမ္ပလေလိုလ်တော်ကိုင် အပါရိတ်လင်မြောက်ရှိရသို့ ပြည်သူ့ကျွန်မာတွေ ဦးစီးဌာန၊ လုပ်ငန်းနှင့်နှင့်တတ်ရန်းကျွင်ကျွန်မာတွေးမှုနဲ့မှု ဆရာဝန်များ၊ သူနာငျွများ၊ ပတ်ဝန်း ကျွင်စိစင်ရောက်နတ်များသည့် လုပ်ငန်းနှင့်ပော်ဝန်းကျွင်မိုင်နိုင်ငြီး လုပ်ငန်းများကို (၃-၃-၂၁၂၅) စစ်ဆေးစားဖြင်းနှင့် လုပ်ငန်းနှင့်ရေးရှိသူမှာဝပြသင်တန်းပို့ချွင်း လုပ်ငန်းများကို (၃-၃-၂၁၂၅) နေနမှ (၇-၃-၂၁၂၅)ရက်နေအထိ လာရောက်ဆောင်ရွက်စည်ဖြစ်ပါကြောင်း ညှိနှင်းအကြောင်ကြား အပ်ပါသည်။

^Bတ္ကူ - ရုံးလက်ခံ - မျှောစာတွဲ (ခေါက်တာကေနိုင်ဒေ ဆွန်ကြသရေးမူး နို

Bi-Annual Environmental Monitoring Report

8. Conclusion and Recommendation

STM Mudstone Quarry demonstrates the implementation of Environment Monitoring Plan in which they are operating and has properly assessed the key potential environmental and social impacts associated with the Mudstone Quarry operation. It is ensuring that the Myanmar environmental legislative compliance and IFC standards of good practice during the Mudstone Quarry expansion project and operations in Thazi Township, Mandalay Region.

Mitigation measures are properly implemented as per stated in EMP, it is expected that the environmental and social impacts are managed by STM with robust environmental management system that is implemented by a well-resourced, integrated and competent HSE staffs as per compliance of STM Mudstone Quarry EIA report.

The Environment Management Plan concludes that no major direct impacts are anticipated from this Project and all environmental impacts have been properly and progressively mitigated. These monitoring results will be properly communicated to stakeholders, especially local community, as per Stakeholders Engagement Plan. Moreover, biannual environmental monitoring reports are disclosed to community at Information Centers in Pyi Nyaung and Ku Pyin villages and has uploaded in Apache Cement Website https://www.apachecement.com/. The "Status of Mudstone Biannual Environmental Monitoring Reports Submission to ECD" can be seen in the Appendix-A2. Monitoring photo records can be seen in the Appendix-F.

Bi-Annual Environmental Monitoring Report

9. Appendix

APPENDIX-A

Bi-Annual Environmental Monitoring Report

APPENDIX-A1

Mitigation Measures for Air Quality Impact

Bi-Annual Environmental Monitoring Report

Figure: Water Suppression Map to mitigate dust emission in plant site

Table: Water Suppression Record from May to April 2025 to mitigate dust suppression in plant site.

	Water Suppression Record 2024-2025											
		Vehicle No. Remark										
Month	(Cap	4174 bacity: 0 gal)	(Ca	-1052 pacity: 00 gal)	(Ca	-5191 pacity:) gal)	(Ca	P-4508 apacity: 00 gal)	(Ca	R-5193 apacity:)0 gal)	(Ca	G-9512 apacity: 00 gal)
	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consu mption	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consump tion
Nov 2024	-	-	19	76000	-	-	110	495000	214	171200	-	-
Dec 2024	-	-	55	220000	54	43200	110	495000	291	232800	-	-
Jan 2025	82	180400	-	-	-	-	109	450500	224	179200	217	607600
Mar 2025	177	389,400	-	-	-	-	110	495,000	273	218,400	124	347,200
Apr 2025	39	85,800	60	240,000	-	-	110	495,000	193	154,400	144	403,200

Note: Source of water supply from Sedimentation Ponds

Bi-Annual Environmental Monitoring Report

APPENDIX-A2

Status of Mudstone Biannual Environmental Monitoring Reports Submission to ECD

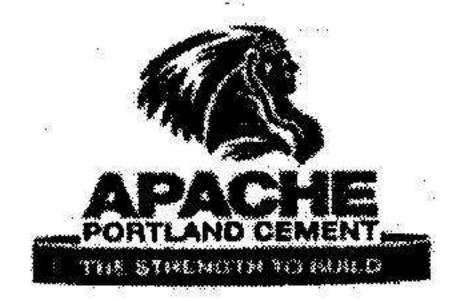
Bi-Annual Environmental Monitoring Report

Table: Status of Mudstone Biannual Environmental Monitoring Reports Submission to ECD

ဝန်ကြီးရုံး အတည်ပြုချက် ရရှိသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာ တင်ပြသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာ တင်ပြသည့် အကြိမ်အရေအတွက်	စောင့်ကြပ်ကြည့်ရှုမှုအစီရင်ခံစာ တင်ပြသည့် အချိန်ကာလ အပိုင်းအခြား	မှတ်ချက်
		ပထမအကြိမ်	၂၀၂၂ ခုနှစ် ဒီဇင်ဘာလမှ ၂၀၂၃ ခုနှစ် မေလအထိ	
	ე <u></u> .ე.ე.ეგ	ဒုတိယအကြိမ်	၂၀၂၃ ခုနှစ် ဇွန်လမှ ၂၀၂၃ ခုနှစ် နိုဝင်ဘာလအထိ	
၁.၁၁.၂၀၂၂	၂၈.၆.၂၀၂၄	တတိယအကြိမ်	၂၀၂၃ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၄ ခုနှစ် ဧပြီလအထိ	ဝန်ကြီးရံးအတည်ပြု သည့် ရက်စွဲအရ ပြန်လည်ညှိနှိုင်း ပြင်ဆင်တင်ပြခဲ့ပါသည်။
	၂၉.၁၁.၂၀၂၄	စတုတ္ထအကြိမ်	၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ် အောက်တိုဘာလအထိ	
	၂၀၂၅ ခုနှစ် မေလ	ပဥ္စအေကြိမ်	၂၀၂၄ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၅ ခုနှစ် ဧပြီလအထိ	
	ဆက်လက်တင်ပြရန်	ဆဌမအကြိမ်	၂၀၂၅ ခုနှစ် မေလမှ ၂၀၂၅ ခုနှစ် အောက်တိုဘာလအထိ	၂၀၂၅ ခုနှစ် နိုဝင်ဘာလအတွင်း တင်ပြရန်

Bi-Annual Environmental Monitoring Report

APPENDIX-B



Bi-Annual Environmental Monitoring Report

APPENDIX - (B-1)

(Ku Pyin Stream Water Quality Results)

Lab & Quality Control Department

Water Quality Test Report

...

.

485.

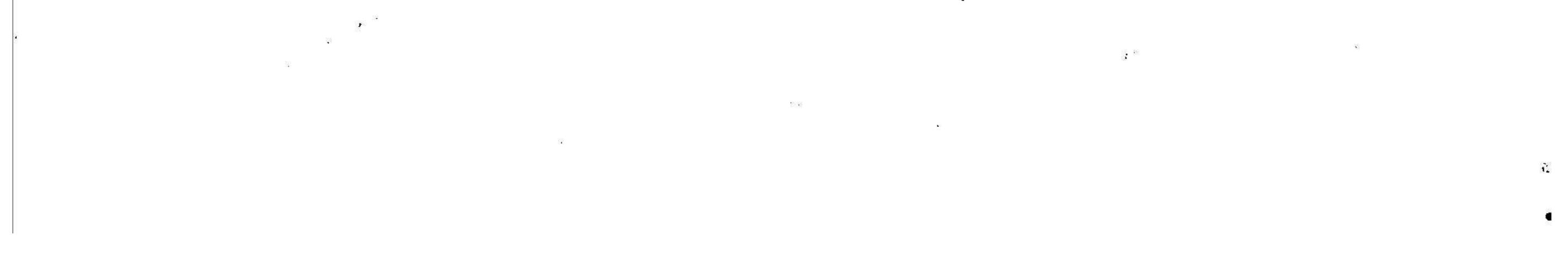
32

Nature of waterStream WaterLocationKu Pyin VillageDate of sample collection22.11.2024Date of sample examination23.11.2024Date of completing26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.3	6.5 ~ 8.5
Colour(True)	5 PCU	15 PCU
Turbidity	0.48 NTU	5 NTU
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	1 mg/l	50mg/l
Nitrate	11.9 mg/l	50mg/l

.

. .


Tested by

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By 88 B Ye Naing Soe leam Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

1.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	1.18 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)		250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	0 mg/l	50mg/l	
Nitrate	8.1 mg/l	50mg/l	

Tested by

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By Ye` Naing Soe Team Leader

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	21.01.2025
Date of sample examination	22.01.2025
Date of completing	23.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.9	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	2.25 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	6 mg/l	50mg/l	
Nitrate	9.3 mg/l	50mg/l	

Tested by

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By Ye` Naing So Manager

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

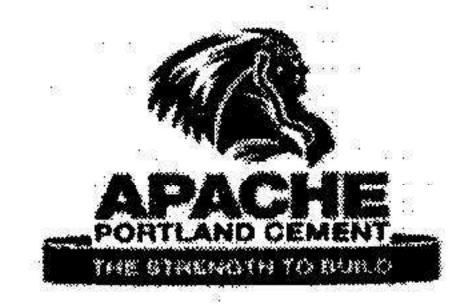
Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	5	15 PCU	
Turbidity	2.11	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)		250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	
Total Suspended Solid(TSS)	6	50mg/l	
Nitrate	4	50mg/l	

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By

Ye' Naing Soe Manager Lab & QC Department Shwe Taung Cement Co., Ltd.



Bi-Annual Environmental Monitoring Report

APPENDIX - (B-2)

(Pyi Nyaung Stream Water Quality Results)

20

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing

Stream Water Near Pyin Nyaung Village 22.11.2024 23.11.2024 26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8	6.5 ~ 8.5
Colour(True)	0 PCU	15 PCU
Turbidity	3.41 NTU	5 NTU
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	12 mg/l	50mg/l
Nitrate	6.3 mg/l	50mg/l

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, 85 - Si Ye Naing Soe ٠. . Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

. 3 ⁵⁴

500

* 25 *****

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.1	6.5 ~ 8.5
Colour(True)	0 PCU	15 PCU
Turbidity	2.06 NTU	5 NTU
Calcium Hardness	-	500 mg/l as CaCO3
Chloride(as Cl)		250mg/l
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	3 mg/l	50mg/l
Nitrate	4.2 mg/l	50mg/l

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

ye' Naing Spe **Team Leader** Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Sheom Water
Location	Near PN Village
Date of sample collection	21.01.2025
Date of sample examination	22.01.2025
Date of completing	23.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.8	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	0.71 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	1 - 4	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	2 mg/l	50mg/l	
Nitrate	9.9 mg/l	50mg/l	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By e`Naing Manager

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	21.02.2025
Date of sample examination	22.02.2025
Date of completing	26.02.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.3	6.5 ~ 8.5
Colour(True)	5 PCU	15 PCU
Turbidity	0.6 NTU	5 NTU
Calcium Hardness		500 mg/l as CaCO3
Chloride(as Cl)	1	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	2 mg/l	50mg/l
Nitrate	3.3 mg/l	50mg/l

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing Soe Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	18.03.2025
Date of sample examination	19.03.2025
Date of completing	21.03.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.7	6.5 ~ 8.5
Colour(True)	20	15 PCU
Turbidity	0.85	5 NTU
Calcium Hardness	-	500 mg/l as CaCO3
Chloride(as Cl)	-	250mg/l
Sulphate(as SO4)	10	200mg/l
Total Suspended Solid(TSS)	1	50mg/l
Nitrate	11.8	50mg/l

Tested by,

Han Ko Win T- Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By Naing Soe e

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.2	6.5 ~ 8.5
Colour(True)	5	15 PCU
Turbidity	0.83	5 NTU
Calcium Hardness		500 mg/l as CaCO3
Chloride(as Cl)	-	250mg/l
Sulphate(as SO4)	10	200mg/l
Total Suspended Solid(TSS)	3	50mg/l
Nitrate	5.2	50mg/l

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, -

e^YNaing Soe Manager (

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-3)

(Ye Shin Stream Water Results)

Lab & Quality Control Department

Water Quality Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing

Stream Water(Ye Chin) Near 6 Unit(Family Housing) 22.11.2024 23.11.2024 26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8	6.5~8.5
Colour(True)	15 PCU	15 PCU
Turbidity	2.15 NTU	5 NTU
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	6 mg/l	50mg/l
Nitrate	1.6 mg/l	50mg/l

· · ·

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, 85.5 Ye/Naing Soe Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

≜2

.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water(Ye Chin)
Location	Near 6 Unit(Family Housing)
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.5	6.5 ~ 8.5	
Colour(True)	15 PCU	15 PCU	
Turbidity	10 NTU	5 NTU	_
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	· -	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	26 mg/l	50mg/l	
Nitrate	6.8 mg/l	50mg/l	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye' Naing Soe Team Leader

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water(Ye Chin)
Location	Near 6 Unit(Family Housing)
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.5	6.5 ~ 8.5	
Colour(True)	10	15 PCU	
Turbidity	1.94	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	20	200mg/l	
Total Suspended Solid(TSS)	6	50mg/l	
Nitrate	5.3	50mg/l	

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By, -

e' Naing So Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-4)

(Supply Water (Lower Reservoir) Results)

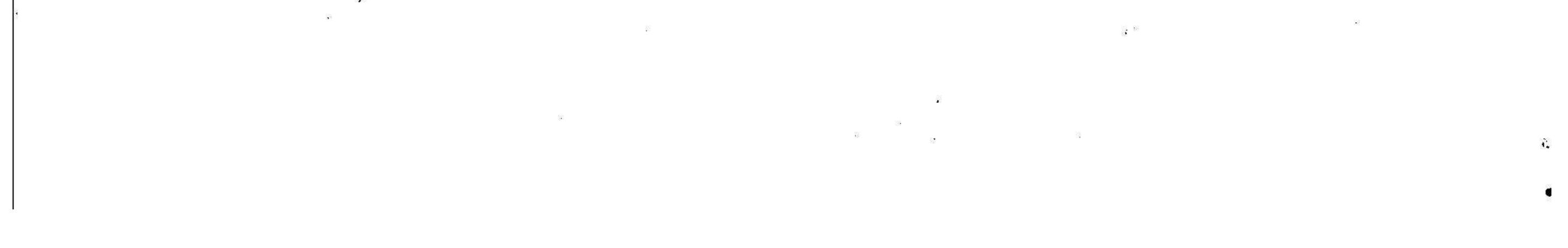
Lab & Quality Control Department

Water Quality Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Lower Reservoir/Non Potable Water Infront of Pump Station. 22.11.2024 23.11.2024 26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline 6.5 ~ 8.5	
PH	8.2		
Colour(True)	20 PCU	15 PCU	
Turbidity	2.8 NTU	5 NTU	
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	11 mg/l	50mg/l	
Nitrate	4.9 mg/l	50mg/l	

Tested by,


.

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye^t Naing Soe 1.00 feam Leader⁽ Lab & QC Department Shwe Taung Cement Co., Ltd.

8

8

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.8	6.5 ~ 8.5	
Colour(True)	20 PCU	15 PCU	
Turbidity	4.31 NTU	5 NTU	
Calcium Hardness	·	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)		250mg/l	no stock chemical
Sulphate(as SO4)	20 mg/l	200mg/l	
Total Suspended Solid(TSS)	16 mg/l	50mg/l	
Nitrate	4.7 mg/l	50mg/l	

Tested by,

Han Ko Win Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By e` Naing Soe Team Leader

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	14.01.2025
Date of sample examination	15.01.2025
Date of completing	18.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	20 PCU	15 PCU	
Turbidity	5.56 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	20 mg/l	200mg/l	
Total Suspended Solid(TSS)	15 mg/l	50mg/l	
Nitrate	3.6 mg/l	50mg/l	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye' Naing Soe Manager (

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	21.02.2025
Date of sample examination	22.02.2025
Date of completing	26.02.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.7	6.5 ~ 8.5	
Colour(True)	35 PCU	15 PCU	
Turbidity	5.22 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	no ocosi chemica
Total Suspended Solid(TSS)	17 mg/l	50mg/l	
Nitrate	4.8 mg/l	50mg/l	

Tested by,

19

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye Naing Soe Manager 2

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	18.03.2025
Date of sample examination	19.03.2025
Date of completing	21.03.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	8.6	6.5 ~ 8.5	
Colour(True)	55	15 PCU	
Turbidity	10.9	5 NTU	
Calcium Hardness	· · · · ·	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	
Total Suspended Solid(TSS)	43	50mg/l	
Nitrate	13.5	50mg/l	

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, e` Naing Soe Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.6	6.5 ~ 8.5	
Colour(True)	30	15 PCU	
Turbidity	2.13	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	no stock chemical
Total Suspended Solid(TSS)	31	50mg/l	
Nitrate	6	50mg/l	1.1

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,_

e' Naing Soe Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-5) (Supply Water (Lower Reservoir)) Tested by External Laboratories

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202408095 Revision No. : 1 Report Date : 22 August, 2024

Application No. : 0235-C001

Test Report

Client Name : Shwe Taung Cement Co.,Ltd

: No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Address

: Shwe Taung Cement Water Quality Test

Sample Description

Sample Name : Supply Water

Sample No. : W-2408079

Waste Profile No. : -

Sampling Date :	7 August, 2024
Sampling By :	Withdraw GEM
Sample Received Date :	7 August, 2024
Analytical Date :	7-22/08/2024

No.	Parameter	Method	Unit	Result	LOQ
1	Temperature	Instrument Analysis Method	°c	26.8	0.0
2	рн	APHA 4500 H+ B (Electrometric Method)	_	8.31	0.00
3	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	12	ų
4	BOD (5)	HACH Method 10099 (Respirometric Method)	mg/l	10.35	0.00
5	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	30.7	0.7
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
8	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	<0.02	0.02
9	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
10	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
13	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
14	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
15	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
16	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
17	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
18	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
19	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.274	0.002
20	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.002
21	Total Cyanide	Distillation Process: APHA 4500-CN- C. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine - Pyrazalone Method)	mg/l	<0.002	0.002
22	Hexavalent Chromium (Cr6+)	ISO 11083:1994 (Determination of chromium(VI) Spectrometric method using 1:5-giphenylcarbazide)	mg/l	<0.05	0.05

THIS ANALYSIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT WRITTEN APPROVAL OF THE LABORATORY OF

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202408095 Revision No. : 1

Report Date : 22 August, 2024

Application No. : 0235-C001

Test Report

Client Name	:	Shwe Taung	Cement Co.,Ltd
-------------	---	------------	----------------

; No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Address

: Shwe Taung Cement Water Quality Test

Sample Description

- Sample Name : Supply Water Sample No. : W-2408079
- Waste Profile No. : -

Sampling Date : 7 August, 2024 Sampling By : Withdraw GEM Sample Received Date : 7 August, 2024 Analytical Date : 7-22/08/2024

No.	Parameter	Method	Unit	Result	LOQ
23	Fluoride	USEPA SPANDS 2 Method	mg/l	0.227	0.014
24	Total Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.1	0.1
25	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.019	0.005
26	Phenols	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	0.006	0.002
27	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	mg/l	54000.0	1.8

Remark : LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By :

Cherry Myint Thein Assistant Manager

*** End Of Document ***

Approved By :

Ni Ni Aye Lwin Aug 22, 2024

Manager

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012 Issue No - 1.0/Page 1 of 2

B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

W0824 167

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement
Nature of Water	ဆည်ရေ
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။
Date and Time of collection	6.8.2024 (10:30 AM)
Date and Time of arrival at Laboratory	7.8.2024
Date and Time of commencing examination	8.8.2024
Date and Time of completing	9.8.2024

Results of Water Analysis

WHO Drinking Water Guideline

(Geneva - 1993)

PH			6.5 - 8.5
Colour (True)		TCU	15 TCU
Turbidity		NTU	5 NTU
Conductivity		micro S/cm	
Total Hardness		mg/I as CaCO ₃	500 mg/l as CaCO ₃
Calcium Hardness		mg/I as CaCO ₃	
Magnesium Hardness		mg/I as CaCO ₃	
Total Alkalinity		mg/I as CaCO ₃	
Phenolphthalein Alkalinity		mg/I as CaCO ₃	
Carbonate (CaCO ₃)		mg/I as CaCO ₃	
Bicarbonate (HCO ₃)		mg/l as CaCO ₃	
lron	0.88	mg/l	0.3 mg/l
Chloride (as CL)		mg/l	250 mg/l
Sodium Chloride (as NaCL)		mg/l	
Sulphate (as SO ₄)		mg/l	500 mg/l
Total Solids		mg/l	1500 mg/l
Total Suspended Solids		mg/l	
Total Dissolved Solids		mg/l	1000 mg/l
Manganese		mg/l	0.05 mg/l
Phosphate		mg/l	
Phenolphthalein Acidity		mg/l	
Methyl Orange Acidity		mg/l	
Salinity		ppt	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by Signature: Name:

5 (a division of WEG Co., Ltd.)

Approved by Signature: Name:

Thinzar Theint Theint Assistant Technical Officer ISO Tech Laboratory

No.18. Lanthit Road, Nanthargone Quarter, Insein Township, Yangon, Myanmar. Ph: 01-640955, 09-880100172, 09-880100173, 01-644506, E-mail: isotechlaboratory@gmail.com, Website: weg-myanmar.com

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012 Issue No - 1.0/Page 2 of 2

Laboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001, Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

W0824 167

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement	
Nature of Water	ဆည်ရေ	
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။	
Date and Time of collection	6.8.2024 (10:30 AM)	
Date and Time of arrival at Laboratory	7.8.2024	
Date and Time of commencing examination	8.8.2024	
Date and Time of completing	9.8.2024	

Results of Water Analysis

WHO Drinking Water Guideline (Geneva - 1993)

Temperature (°C)		°C	
Fluoride (F)	0.4	mg/l	1.5 mg/l
Lead (as Pb)		mg/l	0.01 mg/l
Arsenic (As)	0.005	mg/l	0.01 mg/l
Nitrate (N.NO ₃)		mg/l	50 mg/l
Chlorine (Residual)	Nil	mg/l	
Ammonia Nitrogen (NH ₃)	0.15	mg/l	
Ammonium Nitrogen (NH ₄)		mg/l	
Dissolved Oxygen (DO)		mg/l	
Chemical Oxygen Demand (COD)		mg/l	
Biochemical Oxygen Demand (BOD) (5 days at 20 °C)		mg/l	
Cyanide (CN)	0.011	mg/l	0.07 mg/l
Zinc (Zn)		mg/l	3 mg/l
Copper (Cu)	Nil	mg/l	2 mg/l
Silica (SiO ₂)		mg/l	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

ISTTV) Sr.Chemist

Approved by Signature:

Name:

Thinzar Theint Theint B.E (Civil) Assistant Technical Officer

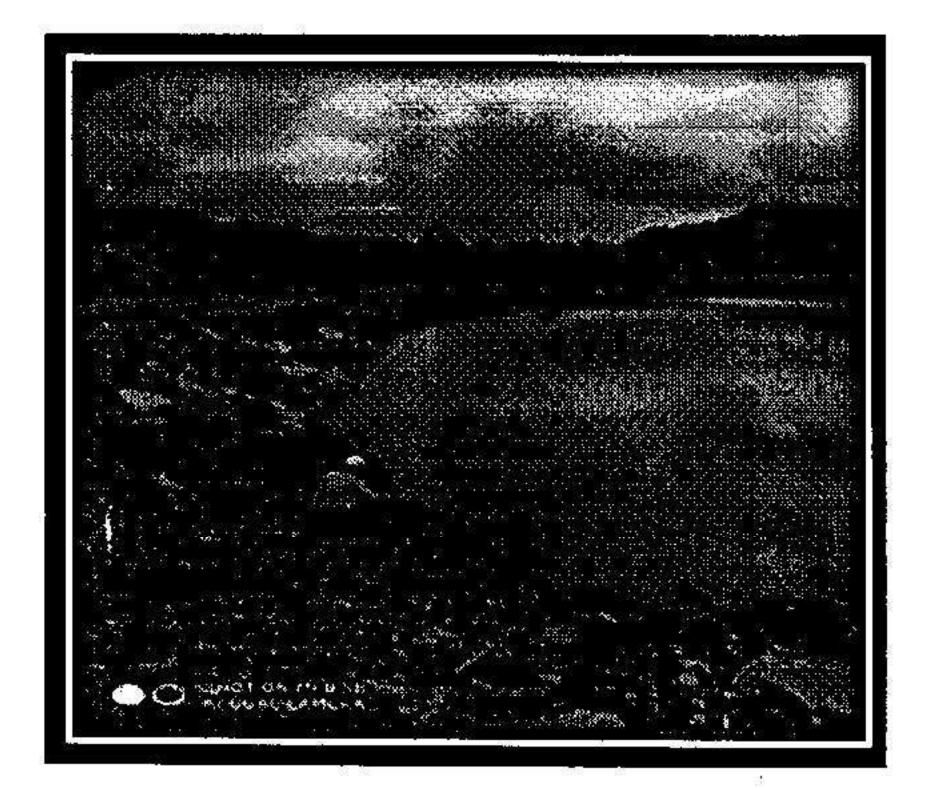
ISO Tech Laboratory

(a division of WEG Co., Ltd.)

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-6)


(Sedimentation Pond 5 Water Results)

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 27.11.2024 28.11.2024 29.11.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
pН	8.2	6-9
Total Suspended Solid(TSS)	35 mg/L	Max 50mg/L
Total Phosphorous	0.2 mg/L	2 mg/L
Total Nitrogen	2.03 mg/L	10mg/L
Total Nitrate	9 mg/L	44.29mg/L

1

0202

>

Approved By,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

.

Ye' Naing Sole Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	
Location	
Date of sample collection	
Date of sample examination	
Date of completing	

Surface Water Beside 103 & 501 Area 17.12.2024 18.12.2024 20.12.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.5	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	15 mg/L	Max 50mg/L	
Total Nitrogen	1.94 mg/L	10mg/L	
Total Nitrate	8.6 mg/L	44.29mg/L	
Total Phosphorous	0.3 mg/L	2mg/L	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing See

Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water
Location
Date of sample collection
Date of sample examination
Date of completing

Surface Water Beside 103 & 501 Area 14.01.2025 15.01.2025 19.01.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	7.4	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	3 4	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	46 mg/L	Max 50mg/L	
Total Nitrogen	0.65 mg/L	10mg/L	
Total Nitrate	2.9 mg/L	44.29mg/L	
Total Phosphorous	0.2 mg/L	,2mg/L	

Tested by,

M

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surf
Location	Besi
Date of sample collection	16.0
Date of sample examination	16.0
Date of completing	20.0

Surface Water Beside 103 & 501 Area 16.02.2025 16.02.2025 20.02.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	23 mg/L	Max 50mg/L	
Total Nitrogen	0.86 mg/L	10mg/L	
Total Nitrate	3.8 mg/L	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by, For they

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

e' Naing Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 15.03.2025 15.03.2025 20.03.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	7.2	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	25 mg/L	Max 50mg/L	1
Total Nitrogen	2.09 mg/L	10mg/L	
Total Nitrate	9.3 mg/L	44.29mg/L	
Total Phosphorous	2 2	2mg/L	no stock chemical

Tested by,

N.O

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

'e' Naing Soe Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 16.04.2025 16.04.2025 18.04.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.5	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	36	Max 50mg/L	
Total Nitrogen	1.2	10mg/L	
Total Nitrate	5.3	44.29mg/L	
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

' Naing Soe Manager (

Lab & QC Department Shwe Taung Cement Co., Ltd.

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-7)

(Sedimentation Pond 6 Water Results)

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination ' Date of completing Surface Water Infront of Main Office 27.11.2024 28.11.2024 29.11.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
pН	9.5	6-9
Total Suspended Solid(TSS)	167 mg/L	Max 50mg/L
Total Phosphorous	0.0 mg/L	2 mg/L
Total Nitrogen	2.21 mg/L	10mg/L
Total Nitrate	9.8 mg/L	44.29mg/L

A ...

S.

Approved By,

*

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Tested by,

Ve' Naing So Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.



Lab & Quality Control Department

Waste Water Test Report

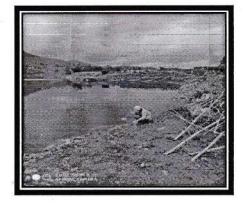
Nature of water	Surface Water
Location	Infront of Main Office
Date of sample collection	17.12.2024
Date of sample examination	18.12.2024
Date of completing	20.12.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8.8	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	131 mg/L	Max 50mg/L	
Total Nitrogen	ND	10mg/L	Can't Test
Total Nitrate	ND	44.29mg/L	Can't Test
Total Phosphorous	0.0 mg/L	2mg/L	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe


Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water
Location	Infront of Main Office
Date of sample collection	14.01.2025
Date of sample examination	15.01.2025
Date of completing	19.01.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8.6	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	128 mg/L	Max 50mg/L	
Total Nitrogen	2.33 mg/L	10mg/L	Can't Test
Total Nitrate	10.3mg/L	44.29mg/L	Can't Test
Total Phosphorous	0.0 mg/L	2mg/L	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water
Location	Infront of Main Office
Date of sample collection	16.02.2025
Date of sample examination	16.02.2025
Date of completing	20.02.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	8.4 mg/L	Max 50mg/L	
Total Nitrogen		10mg/L	Can't Test
Total Nitrate		44.29mg/L	Can't Test
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

for .

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing So Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing

Surface Water Infront of Main Office 15.03.2025 15.03.2025 20.03.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8.4	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	25	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	44mg/L	Max 50mg/L	no stock chemical
Total Nitrogen	2.15mg/L	10mg/L	Can't Test
Total Nitrate	9.5mg/L	44.29mg/L	Can't Test
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

(X.9

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe . 1 Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Infront of Main Office 16.04.2025 16.04.2025 18.04.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	8.2	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	57	Max 50mg/L	L.D.
Total Nitrogen	0.72	10mg/L	Can't Test
Total Nitrate	3.2	44.29mg/L	Can't Test
Total Phosphorous	12	2mg/L	no stock chemical

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

e' Naing Soe Manager (

Lab & QC Department Shwe Taung Cement Co., Ltd.

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX- C

Ambient Air Quality Results

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-1)

Ambient Air Quality Results of Worker Accommodation

Header

Start Da	ta	I-2024 00 PM															
End Da		I-2024 00 PM															
Ave <mark>Max</mark> Min	PMA ug/m3 5.27569 52 2	2.08472 18 1	CO2 ppm 0 0	CO ppm .103534 .35 0	NO2 ppb 63.1312 200 2	O3 ppb 39.7736 94 5	SO2 ppb .951388 34 0	PrpM mm .006687 .13 0	RH % 99.75 100 87	TmpC Deg. C 20.45 22 20	WDir Deg. 245.747 <u>359</u> 0	WSpd mph .079166 2.4 0	Pwr V 10.2722 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	5.27569 52 2	2.08472 18 1	0 0 0	.103534 .35 0	63.1312 200 2	39.7736 94 5	.951388 34 0	.006687 .13 0	99.75 100 87	20.45 22 20	245.747 359 0	.079166 2.4 0	10.2722 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Jun 11, 2024	9.70756 52 2	3.43361 18 1	0 0 0	.126268 .35 .02	65.2453 200 2	46.1260 94 5	2.30252 34 0	.008184 .13 0	100 100 100	20.2857 22 20	269.615 359 0	.128907 2.4 0	10.3783 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 11-06-2024 11:59	9.70756 52 2	3.43361 18 1	0 0 0	.126268 .35 .02	65.2453 200 2	46.1260 94 5	2.30252 34 0	.008184 .13 0	100 100 100	20.2857 22 20	269.615 359 0	.128907 2.4 0	10.3783 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Thu, Jul 11, 2024	2.15502 8 2	1.13491 5 1	0 0 0	.087526 .19 0	61.6426 129 2	35.3005 54 16	0 0 0	.005633 .13 0	99.5739 100 87	20.5656 22 20	228.942 359 0	.044142 2.4 0	10.1975 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 11-07-2024 02:04	2.15502 8 2	1.13491 5 1	0 0 0	.087526 .19 0	61.6426 129 2	35.3005 54 16	0 0 0	.005633 .13 0	99.5739 100 87	20.5656 22 20	228.942 359 0	.044142 2.4 0	10.1975 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	12-12 ate 3:05:	2-2024 00 PM			-												
End Da		2-2024 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave Max Min	63.2798 265 2	4.77569 46 1	7.78541 47 0	.069798 .47 0	31.1333 64 2	14.5868 28 1	3.04513 46 0	0 0 0	81.9520 100 39	19.8680 30 14	193.153 360 3	.268402 4.7 0	10.2555 10.7 9.4	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	63.2798 265 2	<mark>4.77569</mark> 46 1	7.78541 47 0	.069798 .47 0	31.1333 64 2	14.5868 28 1	3.04513 46 0	0 0 0	81.9520 100 39	19.8680 30 14	193.153 360 3	.268402 4.7 0	10.2555 10.7 9.4	0 0 0	0 0 0	0 0 0	0 0 0
Daily Thu, Dec 12, 2024	87.1457 265 13	9.46915 46 1	3.54018 35 0	.070130 .47 0	28.0803 49 2	15.5682 28 1	5.59626 46 0	0 0 0	86.3906 100 39	19.8242 29 15	165.631 195 111	.144672 3.3 0	10.4411 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 12-12-2024 11:59	87.1457 265 13	9.46915 46 1	3.54018 35 0	.070130 .47 0	28.0803 49 2	15.5682 28 1	5.59626 46 0	0 0 0	86.3906 100 39	19.8242 29 15	165.631 195 111	.144672 3.3 0	10.4411 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Fri, Dec 13, 2024	49.1712 202 2	2.00110 11 1	10.2950 47 0	.069602 .27 0	32.9381 64 2	14.0066 28 1	1.53701 17 0	0 0 0	79.3281 100 39	19.8939 30 14	209.423 360 3	.341546 4.7 0	10.1458 10.3 9.4	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 13-12-2024 03:04	49.1712 202 2	2.00110 11 1	10.2950 47 0	.069602 .27 0	32.9381 64 2	14.0066 28 1	1.53701 17 0	0 0 0	79.3281 100 39	19.8939 <u>30</u> 14	209.423 360 3	.341546 4.7 0	10.1458 10.3 9.4	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	ata	I-2025 00 PM			-												
End Da		I-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave	49.3409	5.31944	6.29166	.087465	31.0868	16.5208	1.75208	0	77.2687	18.4798	73.3840	.016111	10.0240	0	0	0	0
Max	147	46	40	.52	72	31	51	0	100	29	358	1.4	10.5	0	0	0	0
Min	2	1	0	0	2	1	0	0	32	12	0	0	9.3	0	0	0	0
EPAS	49.3409	5 <u>.</u> 31944	6.29166	.087465	31.0868	16.5208	1.75208	0	77.2687	18.4798	73.3840	.016111	10.0240	0	0	0	0
919217	147	46	40	.52	72	31	51	0	100	29	358	1.4	10.5	0	0	0	0
	2	1	0	0	2	1	0	0	32	12	0	0	9.3	0	0	0	0
Daily	71.3395	10.8581	.013953	.087883	33.8046	21.6720	5.16046	0	89.5697	17.0209	8.84186	0	10.1693	0	0	0	0
Mon, Sep 1, 2025	147	46	3	.35	52	31	51	0	100	26	16	0	10.5	0	0	0	0
· · ·	34	1	0	0	2	1	0	0	42	14	0	0	9.6	0	0	0	0
Ave Period 24	71.3395	10.8581	.013953	.087883	33.8046	21.6720	5,16046	o	89.5697	17.0209	8.84186	0	10,1693	0	0	0	0
01-09-2025 11:59	147	46	3	.35	52	31	51	0	100	26	16	0	10.5	0	0	0	0
	34	1	0	0	2	1	0	0	42	14	0	0	9.6	0	0	0	0
Daily	39.9752	2.96138	8.96435	.087287	29.9297	14.3277	.300990	0	72.0316	19.1009	100.862	.022970	9.96227	0	0	0	0
Wed, Oct 1, 2025	133	16	40	.52	72	30	9	0	100	29	358	1.4	10.2	0	0	0	0
	2	1	0	0	2	1	0	0	32	12	9	0	9.3	0	0	0	0
Ave Period 24	39.9752	2.96138	8.96435	.087287	29.9297	14.3277	.300990	0	72.0316	19.1009	100.862	.022970	9.96227	0	0	0	0
01-10-2025 04:49	133	16	40	.52	72	30	9	0	100	29	358	1.4	10.2	0	0	0	0
	2	1	0	0	2	1	0	0	32	12	9	0	9.3	0	0	0	0

Header

Start	Data	2-2025 :00 PM			-			••••									
End	Buto	2-2025 :00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Av	ve 117.343	6.20694	134.181	.243673	43.4416	17.1798	5.49305	0	63.7631	21.1375	294.590	.068680	10.0642	0	0	0	0
Ма		41	222	.62	94	37	43	0	100	33	360	3.1	10.5	0	0	0	0
Mi	in 2	1	73	0	2	1	0	0	18	13	0	0	9.6	0	0	0	0
EPAS 919217	117 .343 285 2	6.20694 41 1	134.181 222 73	.243673 .62 0	43.4416 94 2	17.1798 37 1	5.49305 43 0	0 0 0	63.7631 100 18	21.1375 33 13	294.590 360 0	.068680 3.1 0	10.0642 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Fri, Feb 21, 202	25 136.663 25 51	12.5045 41 1	123.086 154 73	.314568 .58 .1	39.5568 83 2	16.9022 32 1	13.7590 43 0	0 0 0	65.6045 90 22	20.3454 31 15	331.640 345 175	0 0 0	10.2565 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24	136.663	12.5045	123.086 154	.314568	39.5568	16.9022	13.7590	0	65.6045	20.3454	331.640	0	10.2565	0	0	0	0
21-02-2025 11:59	235 51	41 1	73	.58 .1	83 2	32 1	43 0	0 0	90 22	31 15	345 175	0 0	10.5 9.7	0 0	0 0	0 0	0 0
Daily	108.842	3.436	139.064	.21248	45 <u>.</u> 151	17.302	1.856	0	62.953	21.486	278.289	.0989	9.9796	0	0	0	0
Sat, Feb 22, 20	025 285 2	19 1	222 81	.62 0	94 2	37 1	30 0	0 0	100 18	33 13	360 0	3.1 0	10.2 9.6	0 0	0 0	0 0	0 0
Ave Period 24 22-02-2025 04:39		3.436 19	139.064 222	.21248 .62	45.151 94	17.302 37	1.856 <u>30</u>	0 0	62.953 100	21.486 33	278.289 360	.0989 3.1	9.9796 10.2	0	0	0	0 0
	2	1	81	0	2	1	0	0	18	13	0	0	9.6	0	0	0	0

Header

Start	Data	3-2025 :00 PM			-												
End	Dute	3-2025 :00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Av Ma Mi	ax 368	6.71041 44 1	141.723 508 84	.347034 .77 0	45.1902 107 2	17.9097 36 1	15.7868 61 0	0 0 0	52.6604 100 5	22.1701 33 13	262.009 359 2	.203402 3.1 0	10.0780 10.6 9.3	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	122.597 368 2	6.71041 44 1	141.723 508 84	.347034 .77 0	45.1902 107 2	17.9097 <u>36</u> 1	15.7868 61 0	0 0 0	52.6604 100 5	22.1701 33 13	262.009 359 2	.203402 3.1 0	10.0780 10.6 9.3	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Jun 3, 20	025 368 47	14.3955 44 1	131.271 159 88	.431155 .77 .13	34.7644 82 2	14.1377 35 1	21.2422 57 0	0 0 0	48.6466 76 12	22.3066 33 16	229.091 350 2	.028666 .9 0	10.3042 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 03-06-2025 11:59		14.3955 44 1	131.271 159 88	.431155 .77 .13	34.7644 82 2	14.1377 35 1	21.2422 57 0	0 0 0	48.6466 76 12	22.3066 33 16	229.091 350 2	.028666 .9 0	10.3042 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Thu, Jul 3, 202	102.965 25 235 2	3.21717 19 1	146.474 508 84	.308797 .74 0	49.9292 107 2	19.6242 36 1	13.3070 61 0	0 0 0	54.4848 100 5	22.1080 33 13	276.971 359 4	.282828 3.1 0	9.97525 10.2 9.3	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 03-07-2025 04:29		3.21717 19 1	146.474 508 84	.308797 .74 0	49.9292 107 2	19.6242 36 1	13.3070 61 0	0 0 0	54.4848 100 5	22.1080 33 13	276.971 359 4	.282828 3.1 0	9.97525 10.2 9.3	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start	Data	1-2025 00 AM			-			••••									
End	Duto	1-2025 00 AM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave		9.03680	46.5541	.353187	45.3631	19.4375	23.9631	0	41.6222	27.2298	163.543	1.42409	10.2463	0	0	0	0
Ma: Mi		55 1	134 0	.87 0	112 2	36 1	67 0	0 0	74 12	36 19	360 9	13 0	10.5 9.9	0 0	0 0	0 0	0 0
EPAS 919217	92.3930 252	9.03680 55	46.5541 134	.353187 .87	45.3631 112	19 <u>.</u> 4375 36	23.9631 67	0 0	41.6222 74	27.2298 36	163.543 360	1.42409 13	10.2463 10.5	0 0	0 0	0 0	0 0
	2	1	0	0	2	1	0	0	12	19	9	0	9.9	0	0	0	0
Daily Fri, Apr 4, 2025	5 110.135 252 2	9.00874 50 1	57.0104 125 0	.403828 .87 0	56.4659 112 2	22 <u>.</u> 3986 36 1	24.1555 55 0	0 0 0	47.8470 74 13	25.4475 36 19	145.074 359 19	.318444 6.5 0	10.2621 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 04-04-2025 11:59	110.135 252 2	9.00874 50 1	57.0104 125 0	.403828 .87 0	56.4659 112 2	22.3986 36 1	24.1555 55 0	0 0 0	47.8470 74 13	25.4475 36 19	145.074 359 19	.318444 6.5 0	10.2621 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Sat, Apr 5, 202	5 23.8209 2 6 0 2	9.14527 55 1	6.14189 134 0	.157466 .26 0	2.45270 32 2	7.99324 22 1	23.2195 67 0	0 0 0	17.5641 27 12	34.1182 35 33	234.925 360 9	5.69729 13 .8	10.1854 10.3 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 05-04-2025 04:55	23.8209 60 2	9.14527 55 1	6.14189 134 0	.157466 .26 0	2.45270 32 2	7.99324 22 1	23.2195 67 0	0 0 0	17.5641 27 12	34.1182 35 33	234.925 360 9	5.69729 13 .8	10.1854 10.3 9.9	0 0 0	0 0 0	0 0 0	0 0 0

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-2)

Ambient Air Quality Results of Pyi Nyaung Village

Header

Start Da	ha	-2024 00 PM										1					
End Dat	e 23-11 4:35:0	-2024 00 PM															
Ave Max	PMA ug/m3 43.7416 148	7.5875 75	CO2 ppm .031944 4	CO ppm .083201 .64	NO2 ppb 29.0125 54	O3 ppb 17.5291 32	SO2 ppb 6.2625 63	PrpM mm 0 0	RH % 82.7041 100	TmpC Deg. C 23.0763 31	WDir Deg. 235.471 358	WSpd mph .086111 2.3	Pwr V 10.2761 10.6	0 0	0 0	0 0	0 0
Min	2	1	0	0	2	1	0	0	39	19	4	0	9.7	0	0	0	0
EPAS 919217	43.7416 148 2	7.5875 75 1	.031944 4 0	.083201 . <mark>64</mark> 0	29.0125 54 2	17.5291 32 1	6.2625 63 0	0 0 0	82.7041 100 39	23.0763 31 19	235.471 358 4	.086111 2.3 0	10.2761 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Fri, Nov 22, 2024	51.2612 125 14	7.63963 21 1	0 0 0	.059527 .55 0	33.5518 54 2	21.7432 32 10	4.22297 52 0	0 0 0	95.8738 100 69	21.8265 26 20	315.520 328 258	.000225 .1 0	10.4281 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 22-11-2024 11:59	51.2612 125 14	7.63963 21 1	0 0 0	.059527 . <mark>55</mark> 0	33.5518 54 2	21.7432 32 10	4.22297 52 0	0 0 0	95.8738 100 69	21.8265 26 20	315.520 328 258	.000225 .1 0	10.4281 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Sat, Nov 23, 2024	40.3895 148 2	7.56425 75 1	.046184 4 0	.093755 . <mark>64</mark> 0	26.9889 54 2	15.6506 32 1	7.17168 63 0	0 0 0	76.8333 100 39	23.6335 31 19	199.787 358 4	.124397 2.3 0	10.2083 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 23-11-2024 04:35	40.3895 148 2	7.56425 75 1	.046184 4 0	.093755 . <mark>64</mark> 0	26.9889 54 2	15.6506 32 1	7.17168 63 0	0 0 0	76.8333 100 39	23.6335 31 19	199.787 358 4	.124397 2.3 0	10.2083 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	ta	2-2024 00 PM															
End Da		2-2024 00 PM															
Ave Max Min	PMA ug/m3 51.8625 245 2	6.79861 58 1	CO2 ppm .800694 13 0	CO ppm .109694 .93 0	NO2 ppb 34.3 67 2	O3 ppb 15.4145 29 1	SO2 ppb 4.17916 <u>32</u> 0	PrpM mm 0 0	RH % 84.7527 100 44	TmpC Deg. C 22.2138 30 18	WDir Deg. 294.670 <u>360</u> 1	WSpd mph .113402 3.3 0	Pwr V 10.2505 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	51.8625 245 2	6.79861 58 1	.800694 13 0	.109694 .93 0	34.3 67 2	15.4145 29 1	4.17916 32 0	0 0 0	84.7527 100 44	22.2138 30 18	294.670 360 1	.113402 3.3 0	10.2505 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Sun, May 12, 2024	67.8535 245 11	13.3435 58 1	.010849 2 0	.171211 .84 0	24.3598 60 2	13.1681 27 1	9.18083 32 0	0 0 0	87.6039 100 48	22.4177 30 19	307.144 336 36	.010849 .6 0	10.3846 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 12-05-2024 11:59	67.8535 245 11	13.3435 58 1	.010849 2 0	.171211 . <mark>84</mark> 0	24.3598 60 2	13.1681 27 1	9.18083 32 0	0 0 0	87.6039 100 48	22.4177 30 19	307.144 336 36	.010849 .6 0	10.3846 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Wed, Jun 12, 2024	41.8928 138 2	2.71815 38 1	1.29312 13 0	.071341 . <mark>93</mark> 0	40.4971 67 2	16.8151 29 1	1.06087 27 0	0 0 0	82.9751 100 44	22.0868 30 18	286.892 360 1	.177339 3.3 0	10.1669 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 12-06-2024 02:46	41.8928 138 2	2.71815 38	1.29312 13 0	.071341 . <mark>93</mark> 0	40.4971 67 2	16.8151 29	1.06087 27 0	0 0 0	82.9751 100 44	22.0868 30 18	286.892 360	.177339 3.3 0	10.1669 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0

Header

Start Dat	· •	-2025 00 PM			_												
End Dat	C	-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave Max Min	84.1312 545 2	6 .49097 51 1	70.6916 170 8	.217020 2.43 0	31.7131 71 2	15.5229 <mark>30</mark> 1	12.0923 305 0	0 0 0	75.4645 100 31	17.9638 28 11	167.231 358 1	.002013 .4 0	10.2833 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	84.1312 545 2	6.49097 51 1	70.6916 170 8	.217020 2.43 0	31.7131 71 2	15.5229 30 1	12.0923 305 0	0 0 0	75.4645 100 31	17.9638 28 11	167.231 358 1	.002013 .4 0	10.2833 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Mon, Jan 13, 2025	85.7886 177 28	10.2570 38 1	52.9673 83 8	.229564 1.12 0	27.6230 56 2	15.4836 27 1	13.4379 118 0	0 0 0	81.2984 100 32	17.4727 26 13	155 155 155	0 0 0	10.4873 10.7 10	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 13-01-2025 11:59	85.7886 177 28	10.2570 38 1	52.9673 83 8	.229564 1.12 0	27.6230 56 2	15.4836 27 1	13.4379 118 0	0 0 0	81.2984 100 32	17.4727 26 13	155 155 155	0 0 0	10.4873 10.7 10	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Jan 14, 2025	83.3557 545 2	4.72884 51 1	78.9847 170 20	.211151 2.43 0	33.6269 71 2	15.5412 30 1	11.4627 305 0	0 0 0	72.7349 100 31	18.1936 28 11	172.954 358 1	.002956 .4 0	10.1878 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 14-01-2025 04:20	83.3557 545 2	4.72884 51 1	78.9847 170 20	.211151 2.43 0	33.6269 71 2	15.5412 30 1	11.4627 305 0	0 0 0	72.7349 100 31	18.1936 28 11	172.954 358 1	.002956 _ <mark>4</mark> 0	10.1878 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	18-02 te 2:20:0	2-2025 00 PM			_												
End Dat		2-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	Prp M mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave Max Min	160.945 452 2	7.77083 52 1	136.055 218 77	.410687 1.81 0	35.9006 82 2	15.6888 33 1	28.8215 99 0	0 0 0	57.8819 100 8	20.2409 33 11	181.107 359 0	.004583 . <mark>3</mark> 0	10.1228 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	160.945 452 2	7.77083 52 1	136.055 218 77	.410687 1.81 0	35.9006 82 2	15.6888 33 1	28.8215 99 0	0 0 0	57.8819 100 8	20.2409 33 11	181.107 359 0	.004583 .3 0	10.1228 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Feb 18, 2025	145.763 265 3	16.4413 52 1	120.379 161 77	.601034 1.81 0	21.6844 67 2	11.9120 29 1	48.1810 98 13	0 0 0	44.4568 82 8	22.5931 33 14	181_868 344 9	.003965 .3 0	10.2915 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 18-02-2025 11:59	145.763 265 3	16.4413 52 1	120.379 161 77	.601034 1.81 0	21.6844 67 2	11.9120 29 1	48.1810 98 13	0 0 0	44.4568 82 8	22.5931 33 14	181.868 344 9	.003965 . <mark>3</mark> 0	10.2915 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Wed, Feb 19, 2025	171.184 452 2	1.92325 9 1	146.627 218 82	.282313 1.13 0	45.4883 82 2	18.2360 33 1	15.7651 99 0	0 0 0	66.9360 100 8	18.6546 33 11	180.594 359 0	.005 .3 0	10.0090 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 19-02-2025 02:19	171.184 452 2	1.92325 9 1	146.627 218 82	.282313 1.13 0	45.4883 82 2	18.2360 33 1	15.7651 99 0	0 0 0	66.9360 100 8	18.6546 <u>33</u> 11	180.594 359 0	.005 .3 0	10.0090 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	18-03 te 2:51:0	3-2025 00 PM			-												
End Dat		3-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	Prp M mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave	135.584	8.88541	48.9666	.615916	61.0951	21.6937	45.5506	0	48.7020	26.9180	117.461	.019027	10.1363	0	0	0	0
Мах	371	55	117	1.87	139	41	140	0	89	35	353	.9	10.7	0	0	0	0
Min	2	1	0	0	2	1	0	0	12	19	3	0	9.3	0	0	0	0
EPAS 919217	135.584 371 2	8.88541 55 1	48.9666 117 0	.615916 1.87 0	61.0951 139 2	21.6937 41 1	45.5506 140 0	0 0 0	48.7020 89 12	26.9180 35 19	117.461 353 3	.019027 .9 0	10.1363 10.7 9.3	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Mar 18, 2025	160.568 371 42	18.9052 55 1	36.9162 85 0	.785409 1.87 .22	40.1730 103 2	17.8524 32 1	46.1912 75 26	0 0 0	38.9617 65 17	28.5701 35 22	118 .127 297 10	.004189 .3 0	10.4058 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24	160.568	18.9052	36.9162	.785409	40.1730	17.8524	46.1912	0	38.9617	28.5701	118.127	.004189	10.4058	0	0	0	0
18-03-2025 11:59	371	55	85	1.87	103	32	75	0	65	35	297	.3	10.7	0	0	0	0
	42	1	0	.22	2	1	26	0	17	22	10	0	9.9	0	0	0	0
Daily	120.189	2.71156	56.3916	.511481	73.9865	24.0606	45.1560	0	54.7037	25.9001	117.050	.028170	9.97037	0	0	0	0
Wed, Mar 19, 2025	350	18	117	1,28	139	41	140	0	89	35	353	.9	10.3	0	0	0	0
	2	1	0	0	2	1	0	0	12	19	3	0	9.3	0	0	0	0
Ave Period 24 19-03-2025 02:50	120.189 350	2.71156 18	56.3916 117	.511481 1.28	73.9865 139	24.0606 41	45.1560 140	0 0	54.7037 89	25.9001 35	117.050 <u>353</u>	.028170 .9	9.97037 10.3	0 0	0 0	0 0	0 0
	2	1	0	0	2	1	0	0	12	19	3	0	9.3	0	0	0	0

Header

Start Dat	•	-2025 00 AM															
End Date	•	-2025 00 AM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave <mark>Max</mark> Min	1160.97 3399 2	7.16944 63 1	21.6631 325 0	.22675 12.84 0	77.2090 329 2	25.5125 51 1	12.9645 62 0	.007895 .48 0	76.4986 100 28	25.7784 34 21	201.364 359 0	.227708 4.8 0	10.0988 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	1160.97 3399 2	7.16944 63 1	21.6631 325 0	.22675 12.84 0	77.2090 329 2	25.5125 51 1	12.9645 62 0	.007895 .48 0	76.4986 100 28	25.7784 34 21	201.364 359 0	<mark>.227708</mark> 4.8 0	10.0988 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Mon, Apr 28, 2025	139.714 1056 2	8.54813 63 1	26.8693 52 0	.192102 . <mark>86</mark> 0	85.9440 158 2	27.1630 45 1	15.7396 62 0	<mark>.007691</mark> . <mark>48</mark> 0	81.5500 100 28	24.5687 32 21	217.890 358 0	.145874 3.1 0	10.1601 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 28-04-2025 11:59	139.714 1056 2	8.54813 63 1	26.8693 52 0	.192102 . <mark>86</mark> 0	85.9440 158 2	27.1630 45 1	15.7396 62 0	.007691 .48 0	81.5500 100 28	24.5687 32 21	217.890 358 0	.145874 3.1 0	10.1601 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Apr 29, 2025	3624.60 3399 2	3.84360 55 1	9.10426 325 0	.310331 12.84 0	56.1374 329 2	21.5308 51 1	6.27014 32 0	.008388 .24 0	64.3127 100 42	28.6966 34 24	161.497 359 0	.425118 4.8 0	9.95094 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 29-04-2025 07:01	3624.60 3399 2	3.84360 55 1	9.10426 325 0	.310331 12.84 0	56.1374 329 2	21.5308 51 1	6.27014 32 0	.008388 .24 0	64.3127 100 42	28.6966 34 24	161.497 359 0	.425118 4.8 0	9.95094 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-3)

Ambient Air Quality Results of Ku Pyin Village

Header

Start Da	ato.	I-2024 00 PM															
End Da	110	I-2024 00 PM															
_	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V	-	_	_	
Ave Max Min	19.0034 87 2	5.70763 55 1	.038888 <mark>8</mark> 0	.105041 .67 0	44.3069 128 2	24.5868 56 1	7.61041 49 0	.000527 . <mark>13</mark> 0	92.4555 100 57	23.9097 30 21	124.513 354 0	.157083 3.6 0	10.3109 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	19.0034 87 2	5.70763 55 1	.038888 8 0	.105041 .67 0	44.3069 128 2	24.5868 56 1	7.61041 49 0	<mark>.000527</mark> .13 0	92.4555 100 57	23.9097 30 21	124.513 354 0	. 157083 3.6 0	10.3109 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Mon, Nov 11, 202	25.8227 4 72 3	8.71641 44 1	0 0 0	.095037 .67 0	53_8675 128 13	27.7611 56 16	2.73507 31 0	.001417 .13 0	100 100 100	23.1082 25 22	98.5074 332 36	.000373 .1 0	10.4652 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 11-11-2024 11:59	25.8227 72 3	8.71641 44 1	0 0 0	.095037 .67 0	53.8675 128 13	27.7611 56 16	2.73507 31 0	.001417 .13 0	100 100 100	23.1082 25 22	98.5074 332 36	.000373 .1 0	10.4652 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Wed, Dec 11, 202	14.9601 2 87 2	3.92367 55 1	.061946 8 0	.110973 .29 .03	38.6382 92 2	22.7046 49 1	10.5011 49 0	0 0 0	87.9823 100 57	24.3849 30 21	139.932 354 0	.25 3.6 0	10.2193 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 11-12-2024 03:03	14.9601 87 2	3.92367 55 1	.061946 <mark>8</mark> 0	<mark>.110973</mark> .29 .03	38.6382 92 2	22.7046 49 1	10.5011 49 0	0 0 0	87.9823 100 57	24.3849 30 21	139.932 354 0	.25 3.6 0	10.2193 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	to	2-2024 00 PM			_												
End Da	te 03-12 2:13:0	2-2024 00 PM															
Ave <mark>Max</mark> Min	PMA ug/m3 24.2392 96 2	4.91933 40 1	CO2 ppm 2.18776 <u>30</u> 0	CO ppm .075618 .29 0	NO2 ppb 35.7545 67 2	O3 ppb 17.2649 <u>30</u> 1	SO2 ppb 2.33936 40 0	PrpM mm 0 0	RH % 88.0563 100 53	TmpC Deg. C 22.3129 29 19	WDir Deg. 168.748 <u>359</u> 0	WSpd mph .212934 4.2 0	Pwr V 10.2846 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	24.2392 96 2	4.91933 40 1	2.18776 <u>30</u> 0	.075618 .29 0	35.7545 67 2	17.2649 <u>30</u> 1	2.33936 40 0	0 0 0	88.0563 100 53	22.3129 29 19	168.748 359 0	<mark>.212934</mark> 4.2 0	10.2846 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Mon, Dec 2, 2024	35.2273 96 6	8.17094 40 1	3.26837 30 0	.074957 .29 .02	31.5179 63 2	18.4581 29 1	3.82735 40 0	0 0 0	91.6883 100 58	22.3264 28 19	83.9709 359 0	.035042 1.6 0	10.4104 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 02-12-2024 11:59	35.2273 96 6	8 .17094 40 1	3.26837 30 0	.074957 .29 .02	31.5179 63 2	18.4581 29 1	3.82735 40 0	0 0 0	91.6883 100 58	22.3264 28 19	83.9709 359 0	.035042 1.6 0	10.4104 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Dec 3, 2024	16.7033 67 2	2.68933 19 1	1.44665 26 0	.076072 . <mark>23</mark> 0	38.6600 67 2	16.4466 <u>30</u> 1	1.31887 13 0	0 0 0	85.5697 100 53	22.3036 29 19	226.889 358 0	.334935 4.2 0	10.1983 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 03-12-2024 02:13	16.7033 67 2	2.68933 19 1	1.44665 26 0	.076072 .23 0	38.6600 67 2	16.4466 <u>30</u> 1	1.31887 13 0	0 0 0	85.5697 100 53	22.3036 29 19	226.889 358 0	.334935 4.2 0	10.1983 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0

Header

Environmental Report

Start Da	16-01 te 2:47:0	-2025 00 PM															
End Da		-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave <mark>Max</mark> Min	33.2868 202 2	7.22847 54 1	81.8812 129 32	.116770 .75 0	33.7840 78 2	16.3590 29 1	3.40277 39 0	0 0 0	74.9243 100 17	17.125 31 9	78.3562 357 2	.000069 .1 0	10.2356 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	33.2868 202 2	7.22847 54 1	81.8812 129 32	.116770 .75 0	33.7840 78 2	16.3590 29 1	3.40277 39 0	0 0 0	74.9243 100 17	17.125 31 9	78.3562 357 2	.000069 .1 0	10.2356 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Thu, Jan 16, 2025	42.5569 72 2	15.3128 54 1	72.8716 104 43	.132730 .24 .06	28.1121 60 2	16.8119 29 1	5.19168 26 0	0 0 0	78.0813 100 18	17.6817 30 11	72.6980 357 22	0 0 0	10.4079 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 16-01-2025 11:59	42.5569 72 2	15.3128 54 1	72.8716 104 43	.132730 .24 .06	28.1121 60 2	16.8119 29 1	5.19168 26 0	0 0 0	78.0813 100 18	17.6817 <u>30</u> 11	72.6980 357 22	0 0 0	10.4079 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0
Daily Fri, Jan 17, 2025	27.5073 202 2	2.18827 11 1	87.4983 129 32	.106820 .75 0	37.3201 78 2	16.0766 29 1	2.28748 39 0	0 0 0	72.9560 100 17	16.7779 31 9	81.8838 356 2	.000112 .1 0	10.1282 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 17-01-2025 02:46	27.5073 202 2	2.18827 11 1	87.4983 129 32	.106820 .75 0	37.3201 78 2	16.0766 29 1	2.28748 39 0	0 0 0	72.9560 100 17	16.7779 31 9	81.8838 356 2	.000112 .1 0	10.1282 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start Da	ata	2-2025 00 PM			-												
End Da		2-2025 00 PM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave Max Min	69.5608 161 2	8.76740 68 1	129_455 184 86	.217404 .8 0	38.8983 91 2	18.2101 36 1	9.38900 58 0	0 0 0	60.6089 100 13	21.8851 34 13	193.716 345 3	.031106 1.3 0	9.98065 10.5 9.3	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	69.5608 161 2	8.76740 68 1	129.455 184 86	.217404 .8 0	38.8983 91 2	18.2101 36 1	9.38900 58 0	0 0 0	60.6089 100 13	21.8851 34 13	193.716 345 3	.031106 1.3 0	9.98065 10.5 9.3	0 0 0	0 0 0	0 0 0	0 0 0
Daily Thu, Feb 27, 2025	68.3875 5 136 17	16.1648 48 1	121.398 154 86	.226770 .8 .06	33.7527 76 2	19.2449 36 1	15.4031 37 0	0 0 0	59.3095 89 16	21.1625 32 15	199.561 262 131	0 0 0	10.1763 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 27-02-2025 11:59	68.3875 136 17	16.1648 48 1	121.398 154 86	.226770 .8 .06	33.7527 76 2	19.2449 <u>36</u> 1	15.4031 37 0	0 0 0	59.3095 89 16	21.1625 32 15	199.561 262 131	0 0 0	10.1763 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Fri, Feb 28, 2025	70.0941 161 2	5.40222 68 1	133.117 184 87	.213147 .72 0	41.2368 91 2	17.7398 35 1	6.65587 58 0	0 0 0	61.1993 100 13	22.2135 34 13	191.060 345 3	.045242 1.3 0	9.89170 10.2 9.3	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 28-02-2025 04:28	70.0941 161 2	5.40222 68 1	133.117 184 87	.213147 .72 0	41.2368 91 2	17.7398 35 1	6.65587 58 0	0 0 0	61.1993 100 13	22.2135 34 13	191.060 345 3	.045242 1.3 0	9.89170 10.2 9.3	0 0 0	0 0 0	0 0 0	0 0 0

Header

Start D	ata	3-2025 00 AM			-			••••									
End Da		3-2025 00 AM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave Max Min	61.1298 301 2	7.70833 48 1	14.5493 55 0	.268826 .74 0	46.7701 127 2	17.1090 36 1	16.7666 66 0	0 0 0	46.9159 100 13	26.7368 36 20	195.263 359 0	.018194 1.7 0	10.1642 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	61.1298 301 2	7.70833 48 1	14.5493 55 0	.268826 .74 0	46.7701 127 2	17.1090 36 1	16.7666 66 0	0 0 0	46.9159 100 13	26.7368 36 20	195.263 359 0	.018194 1.7 0	10.1642 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Mar 25, 202	65.9062 5 301 2	8.74057 48 1	16.2243 55 0	.282620 .74 0	55.2278 127 2	19.9675 36 1	19.3260 66 0	0 0 0	51.0806 100 13	25.5985 36 20	206.428 359 0	.016827 1.7 0	10.2019 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 25-03-2025 11:59	65.9062 301 2	8.74057 48 1	16.2243 55 0	.282620 .74 0	55.2278 127 2	19.9675 36 1	19.3260 66 0	0 0 0	51.0806 100 13	25.5985 36 20	206.428 359 0	.016827 1.7 0	10.2019 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Wed, Mar 26, 202	42.9030 5 119 3	3.76923 43 1	8.15719 24 0	.216187 .28 .1	14.4949 91 2	6.20066 29 1	7 26 0	0 0 0	31.0234 56 21	31.0802 35 25	152.658 358 0	.023411 .5 0	10.0204 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 26-03-2025 04:58	42.9030 119 3	3.76923 43 1	8.15719 24 0	.216187 .28 .1	14.4949 91 2	6.20066 29 1	7 26 0	0 0 0	31.0234 56 21	31.0802 35 25	152.658 358 0	.023411 .5 0	10.0204 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0

Record Cnt 1440

Header

Environmental Report

Start Da	to	-2025 00 AM			_												
End Da	te 23-04 4:24:0	-2025 00 AM															
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V				
Ave <mark>Max</mark> Min	37.5131 101 2	8.97222 56 1	48.2965 153 0	.176875 . <mark>32</mark> 0	59.1236 141 2	24.5451 44 1	20.7263 70 0	0 0 0	61.3590 100 23	29.2819 36 24	151.586 346 1	.68625 5.9 0	10.1879 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
EPAS 919217	37.5131 101 2	8 <u>.</u> 97222 56 1	48.2965 153 0	.176875 .32 0	59.1236 141 2	24.5451 44 1	20.7263 70 0	0 0 0	61.3590 100 23	29.2819 36 24	151.586 346 1	.68625 5.9 0	10.1879 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Tue, Apr 22, 2025	45.3276 101 2	10.68 56 1	59.1472 153 0	.178314 .32 0	72.0068 141 2	29.8553 44 1	19.2417 70 0	0 0 0	68.0170 100 23	28.0170 36 24	144.324 346 1	.339063 4.1 0	10.1971 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 22-04-2025 11:59	45.3276 101 2	10.68 56 1	59.1472 153 0	.178314 . <mark>32</mark> 0	72.0068 141 2	29.8553 44 1	19.2417 70 0	0 0 0	68.0170 100 23	28.0170 36 24	144.324 346 1	.339063 4.1 0	10.1971 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Daily Wed, Apr 23, 2025	2.86415 15 2	1.4 41 1	.184905 4 0	.170490 .24 .1	2 2 2	1 1 1	27.3094 53 3	0 0 0	31.8377 38 27	34.8905 36 33	183.788 268 37	2.22566 5.9 .3	10.1471 10.2 9.7	0 0 0	0 0 0	0 0 0	0 0 0
Ave Period 24 23-04-2025 04:24	2.86415 15 2	1.4 41 1	.184905 4 0	.170490 .24 .1	2 2 2	1 1 1	27.3094 53 3	0 0 0	31.8377 38 27	34.8905 36 33	183.788 268 37	2.22566 5.9 .3	10.1471 10.2 9.7	0 0 0	0 0 0	0 0 0	0 0 0

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-D

Corporate Social Responsibility

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီနှင့် ရွှေတောင်သတ္တုထုတ်လုပ်ရေးကုမ္ပဏီတို့မှ ဒေသဖွံ့ဖြိုးရေးအတွက် ဆောင်ရွက်ထားရှိမှုများ

စဥ်	အကြောင်းအရာ	Nov - 2024	Dec - 2024	Jan - 2025	Feb - 2025	Mar - 2025	Apr - 2025	Total
	လမ်းပန်းဆက်သွယ်ရေး	17 700 010	700.000	175 000	744.000			10,440,010
Э	တိုးတက်ကောင်းမွန်အောင် ဆောင်ရွက်ပေးနိုင်မှု	17,726,813	796,000	175,200	744,000			19,442,013
	ပြည်သူများ ရေရရှိမှု							
J	အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု	441,000	367,500	441,000	572,200			1,821,700
	လျှပ်စစ်မီးရရှိရေး							
ર	အထောက်အကူပြု							0
	ဆောင်ရွက်ပေးနိုင်မှု 							
9	ပညာရေး ဖွံ့ဖြိုးတိုးတက်စေရန် အထောက်အကူပြု	1,645,600	1,602,400	2,090,500	4,761,500		703,800	11,762,400
	ဆောင်ရွက်ပေးနိုင်မှု					958,600		
	ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်စေရန်							
່ງ	အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု	220,532	319,132					539,664
	ရ ုိ။ လူမှုရေးနှင့် ကယ်ဆယ်ရေး							
ତ	အထောက်အကူပြု	184,000	922,500	3,918,100	279,800		2,204,800	9,507,600
	ဆောင်ရွက်ပေးနိုင်မှု					1,998,400		
9	ဘာသာသာသနာရေး အထောက်အကူပြု	600,000	1,237,500		1,000,600			4,138,100
	ဆောင်ရွက်ပေးနိုင်မှု					1,300,000		
	သဘာဝဘေးအန္တရာယ်ကျရောက်							
ຄ	ပျက်စီးမှုများ အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု						236,277,100	236,277,100
	စုစုပေါင်း	20,817,945	5,245,032	6,624,800	7,358,100	4,257,000	239,185,700	283,488,577
	မိုဖိုစင်င်း	20,011,343	5,213,032	0,024,000	1,550,100	4,231,000	233,103,100	203,400,311

လမ်းပန်းဆက်သွယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက် <u>ပေးခြင်း</u>

ပုံ- ၂၀၂၄ခုနှစ်၊ ဒီဇင်ဘာလအတွင်း သာစည်မြို့နယ်၊ လှိုင်းတက်ကျေးရွာအုပ်စု၊ လှိုင်းတက်ကျေးရွာရှိ ကျေးရွာလမ်းအား ကွန်ကရစ်လမ်းခင်းရန်အတွက် လိုအပ်သော ဘိလပ်မြေအိတ်များကို လူ၊ဒါန်းခြင်း။

ပုံ - ၂၀၂၄ခုနှစ်၊ နိုဝင်ဘာလအတွင်း ကူပြင်ကျေးရွာသို့ သွားသည့် ကျေးလက်လမ်းအား လိုအပ်သည့်မြေနှင့်ကျောက်များဖြည့်၍ စက်ယန္တရားများဖြင့် မြေညှိပေးခြင်း။

<u>ပညာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း</u>

ပုံ- ၂၀၂၄ခုနှစ်၊ ဇွန်လမှ ၂၀၂၅ခုနှစ်၊ မတ်လအထိ ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာအခြေခံပညာကျောင်းများအတွက် လိုအပ်သော ဆရာ/ဆရာမများ ငှားရမ်းနိုင်ရန်အတွက် လစာငွေများ ထောက်ပံ့ပေးခြင်း။

ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာ အခြေခံပညာကျောင်းများမှ ကျောင်းသား/ကျောင်းသူ (၁၀)ဦးအား ပညာသင်ထောက်ပံ့ကြေးပေးအပ်ခြင်း။

<u>ပညာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း</u>

ပုံ- ၂၀၂၅နှစ်၊ ဇန်နဝါရီလတွင် ကူပြင်ကျေးရွာ၊ အခြေခံပညာအလယ်တန်းကျောင်းတွင် ကျင်းပပြုလုပ်သော ပညာရေးစုံညီပွဲတော်အတွက် ရန်ပုံငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းမှ ယင်းမာပင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်း ကျောင်းသို့ G12 ကျောင်းသား/သူများ စာမေးပွဲ သွားရောက်ဖြေဆိုနိုင်ရန်အတွက် အကြိုအဝို့ ပြုလုပ်ပေးခြင်း။

ပုံ- ၂၀၂၅နှစ်၊ ဇန်နဝါရီလတွင် ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းတွင် ကျင်းပပြုလုပ်သော ပညာရေးစုံညီပွဲတော်အတွက် ရန်ပုံငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ကူပြင်ကျေးရွာ၊ အခြေခံပညာအလယ်တန်းကျောင်းမှ ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်း ကျောင်းသို့ G5 နှင့် G9 ကျောင်းသား/သူများ စာမေးပွဲ သွားရောက်ဖြေဆိုနိုင်ရန်အတွက် အကြိုအပို့ ပြုလုပ်ပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းရှိ နှစ်ထပ်ကျောင်းဆောင်၏ ခေါင်မိုးနှင့် မျက်နှာကျက်များ ပြုပြင်ရန်နှင့် အိမ်သာ(၈)လုံးတွဲအတွက် အိမ်သာကျင်း အသစ်တည်ဆောက်ရန် လိုအပ်သော ငွေအား လှူဒါန်းခြင်း။

ပုံ- ၂၀၂၅နှစ်၊ ဖေဖော်ဝါရီလတွင် ကူပြင်စာသင်ကျောင်းတွင် "ကူးစက်တတ်သော ရောဂါများအကြောင်း သိကောင်းစရာ" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပနေစဉ်။

ကျွန်းမာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ - ကူပြင်ကျေးရွာနှင့် ပြည်ညောင်ကျေးရွာအတွင်းရှိ ဒေသနေပြည်သူများအား လစဥ် အခမဲ့ ကျန်းမာရေး စောင့်ရှောက်ပေးနေစဥ်။ <u>ပြည်သူများ ရေရရှိရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီ ဆောင်ရွက်</u> <u>ပေးခြင်း</u>

ပုံ- ကူပြင်ကျေးရွာရှိ သောက်ရေသန့်စက်တွင် ပြုပြင်ရန် လိုအပ်သော Magnetic connector အား ဝယ်ယူ၍ တပ်ဆင်ပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ အခြေခံပညာအထက်တန်းကျောင်းအတွက် သုံးရေ ကူညီပံ့ပိုးပေးခြင်း။

ပုံ- ပဲခူးမြို့၊ ပဲခူးတက္ကသိုလ်အနီး ဆုတောင်းပြည့်ကျောင်းတိုက်သို့ နဝကမ္မ အလှူငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ကူပြင်ကျေးရွာ (၁၂)ကြိမ်မြောက် မဟာပဌာန်းရွတ်ဖတ်ပူဇော်ပွဲနှင့် ဆွမ်းဆန်စိမ်းလောင်းလှူသည့်ပွဲတွင် ဆန်နှင့် ဝတ္တုငွေ လောင်းလှူခြင်း။

<u>လူမှုရေးနှင့်ကယ်ဆယ်ရေး ဖွံ့ဖြိုတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီပေးခြင်း</u>

ပုံ- ပြည်ညောင်ကျေးရွာ ဘောလုံးကွင်းအသစ် တည်ဆောက်ရာတွင် လိုအပ်သော ဘိလပ်မြေအိတ်များ လှူဒါန်းခြင်း။

ပုံ -၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလမှ စတင်၍ လစဥ် ကူပြင်ကျေးရွာရှိ အသက်အရွယ်ကြီးရင့်သော အဖိုးအဖွားများအား ကူညီထောက်ပံ့ပေးခြင်း။

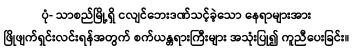
သဘာ၀ဘေးအန္တရာယ် ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့လယ်ဗလီ (မြင်းဘက်)တွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသော အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့ပေါ် ရပ်ကွက်များရှိ ငလျင်ဘေးသင့်ပြည်သူများကို ထမင်းဘူးများ ဝေငှခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကန်ဦးကျောင်းတွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသေ အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မက်သဒစ်အသင်းတော် (မြင်းဘက်)တွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသော အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။


သဘာဝဘေးအန္တရာယ် ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်

<u>ပေးခြင်း</u>

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကန်ဦးကျောင်းနှင့် ပူးပေါင်း၍ ငလျင်ဘေးသင့် ပြည်သူများအတွက် ရေသန့်ကဒ် (၆၀)ကဒ်၊ ဆန် (၅) အိတ်၊ ခေါက်ဆွဲခြောက် အထုပ် (၂၀၀၀) လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့ရှိ ငလျင်ဘေးဒဏ်သင့်ခဲ့သော နေရာများအား ဖြိုဖျက်ရှင်းလင်းရန်အတွက် စက်ယန္တရားကြီးများ အသုံးပြု၍ ကူညီပေးခြင်း။

ပုံ- သာစည်မြို့နယ်ရှိ ငလျင်ဘေးဒဏ်သင့်ခဲ့သော ပြို/ပျက်/သေဆုံး စုစုပေါင်း အိမ် (၅၀) ထံသို့ ပစ္စည်း(၁၈)မျိုးအား လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကံဦးကျောင်းရှိ စာသင်သား ရဟန်းသံဃာများနှင့် ပျော်ဘွယ်မြို့နေ ပြည်သူလူထုများ သောက်သုံးရေသန့် အခက်အခဲမရှိစေရန်အတွက် တစ်နာရီ 1000 လီတာကျ ROသောက်ရေသန့်စက် တပ်ဆင်လှူဒါန်းပေးခြင်း။

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-E

Emergency Preparedness Fire Drill Exercise Report

EMERGENCY PREPAREDNESS FIRE DRILL EXERCISE REPORT

(28 Nov 2024, APACHE CEMENT FACTORY)

Prepare by Position Department Contact No

: Cho Thazin Thein : Safety Manager : OHS : 09255113710

.

Title: Lubricant caught fire at Line1 (701) Lubricant station area

Contents

- 1. Introduction
- 2. Objectives
- 3. Table Talk Exercise
- 4. Scenario
- 5. Event
- 6. Fire Drill Result
- 7. Debrief
- 8. Appendixes
 - a. Process details flow chart
 - b. Emergency contact list
 - c. Site in charge manage to extinguished lubricant fire using by fire extinguisher
 - d. Site supervisor inform to Hotline 09-255113060
 - e. Firefighter team and Rescue team conduct briefing and start to activate
 - f. Head count team roll call at assembly area
 - g. Firefighting team extinguished Lubricant fire by using fire truck and fire hydrant
 - h. Rescue team relocate injury person to the safe location given first aid treatment
 - i. OHS Manager explain usage of fire extinguisher and some of participant take part the demonstration on the usage of fire extinguisher
 - j. Plant Manager debrief about the fire drill on how important of fire drill in case of emergency

Introduction

Name

City

State

Country

Company Name

: Pyi Nyaung

: Shwe Taung Cement Co.Ltd

(Apache Cement)

: Tharzi Township

: Mandalay Devision

: Myanmar

Apache Cement Plant is situated at Pyi Nyaung Village, Thazi Township, Meiktila District, Mandalay Division.

This is recommended that ERT Emergency Response Team is prepared for any type of emergency that may occur.

Location of Apache Cement Factory

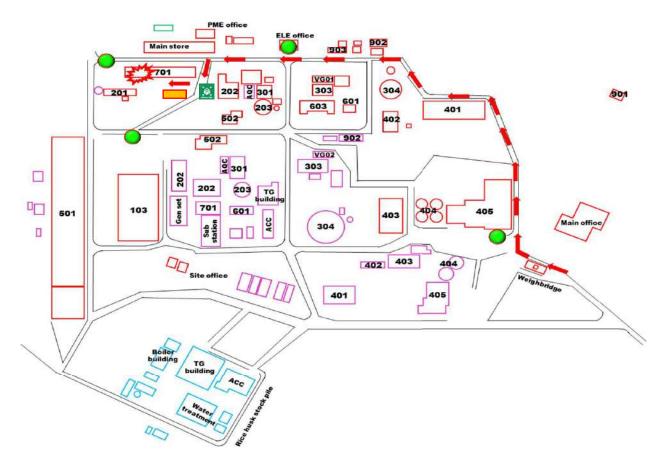
Objective

- To ensure that everyone knows what to do in case of emergency
- By practicing, people know how to escape safely and quickly
- To ensure all individuals in the workplace familiar with escape routes, emergency exits and safety protocols
- To practices everyone safety evacuate the nearest AA in an orderly manner
- Trained person aware on how to rescue injury person who trap inside the fire
- To familiarize on the usage of fire truck & fire fighting such as Fire Hose Reel and fire extinguisher

Table Talk Exercise

Below are the key information to be discussed and concluded:

- The date/time of the exercise was confirmed. The proposed date/time were to be scheduled on 28 Nov 2024 at approximately 8:30 am.
- All personnel involved in the premises are encouraged to participate promptly.
- The passing time criterion is 15 minutes sharp.
- Identification of the premises key roles/responsibilities.
 - a) ERT Controller
 - b) Firefighting team leader/members
 - c) Rescue team leader/members
 - d) Traffic Control team leader/members
 - e) Communication team leader/members
 - f) Head count team leader/members
 - g) Fire truck driver and ambulance
- The purpose of this exercise is to permit the contractors/staffs to understand the procedures and response as accordingly.
- To have a basic knowledge on how to operate a fire extinguisher/hose reel correctly.
- To have a basic knowledge on how to response effectively



Drill Scenario

- About 8:30 am one of PME staff noticed some flame come out from lubricant storage place and some of PME staffs also inside the lubricant room by taking the lubricant.
- Immediately he manages to get Portable FE from nearest FE stand and put out the fire.
 However, 1 of the staff trap in the room and not easy to come out.
- Firstly, he try to rescue the trap person but the fire is growing bigger and can't get go in the lubricant room. He called for help and together with team manage to get fire hose reel by the nearest points to extinguish the fire.
- After sometime, ambulance arrived together with medical team

LEGEN	LEGEND						
	Assembly Point						
S. MAY	Fire catch area						
	Fire engine route						
	Fire truck						
\bigcirc	Security check point						

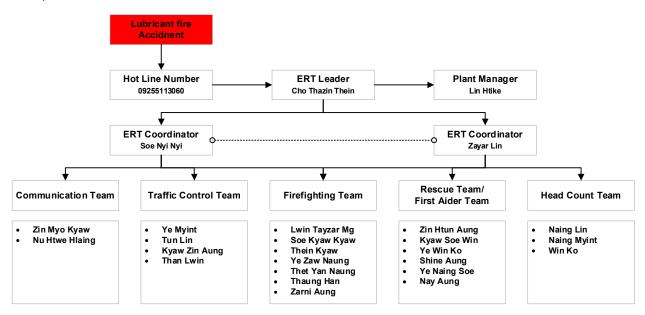
Event

The events are recorded and listed below:

Estimated Time	Events(s)						
8:30 am	Fire Breakout Location Line1 (701) Lubricant station area						
8:31 am	PME staff try to extinguished by fire extinguisher						
8:33 am	PME in charge inform to STC hot line_09255113060						
8:35 am	Activate firefighting team						
8:37 am	Personnel proceed to the nearest Emergency Assembly Area (EAA)						
8:38 am	Head count check each location and report to ERT						
8:39 am	Fire truck and ambulance arrived on site with fully equipped						
8:40 am	Fire was put up and Exercise cease						
8:40 am	Rescue team relocate injury person to the safe location and given first aid treatment						
8:45 am	Debrief by OHS Manager / Plant Manager						

Fire Drill Result

- 1. Total participation: 80
 - a. Firefighting team: 7
 - b. Traffic control team: 4
 - c. Rescue team/ first aider team: 6
 - d. Number of special fire warden: 2
- Assemble Time Record: Approximately 15 ~ 20 minutes (inclusive of reporting headcount to ERT controller)


Debrief

- 1. Recap on the basic procedures when a fire alarm had activated:
 - a. When hear the alarm, stop work
 - b. Turn off the electrical supply in building
 - c. Turn off the equipment and machinery on site
 - d. Move to the assembly area; fast and slowly
 - e. At the assembly area, respective dept-in-charge will act as head count officer to take head count and register in the attendance sheet
 - f. Wait for further instructions by ERT coordinator / ERT controller
- 2. Emphasis on the objective of the exercise and importance to be prepared

Appendixes

a) Process details flow chart

b) STC Emergency contact list

STC Contact Numbers							
Name	Position	Contact numbers					
U Lin Htike	Plant Manager	09255112918					
Daw Nan Maw Maw Aye	Head of General Admin Division	09 255112651					
Daw Cho Thazin Thein	OHS Manager	09255113710					
U Mon Khan	Head of Division	09255112909					
Nay Soe Naing	Head of occupational health & safety	09255112704					
U Zaw Hlaing Oo	ELE Manager	09255111988					
Thiha Soe	PME Manager	09255112897					

Key Personnel	Pager / Hand phone
Police	199
Ambulance (Phyu Sin Myitta)	09968014931/09976897934
Rescue dept	0673404666/0673404777
Factory and general labour law inspection dept	095032471
Fire Service (Yin Mar Pin Station)	09445921400 /191
Meiktala General Hospital	095 84497
Fire Service (Thar Zi Station)	0642069131

c) Site in charge manage to extinguished lubricant fire using by fire extinguisher

d) Site supervisor inform to Hotline 09-255113060

e) Firefighter team, Rescue team and First aider team activate

f) Head count team roll call at assembly area

g) Firefighting team extinguished Lubricant fire by using fire truck

h) Rescue team relocate injury person to the safe location given first aid treatment

i) Participant demonstrate on the usage of fire extinguisher

j) OHS Manager / Plant manager debrief about fire drill

SHWE TAUNG MINING COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-F

Monitoring Photo Records

Ambient Air Monitoring Photo Records

Worker Accommodation

Pyi Nyaung Village

Ku Pyin Village

Water Quality Monitoring Photo Records

Ku Pyin Stream

Ye Shin Stream (Near Pyi Nyaung)

Ye Shin Stream (Near 6 Unit)

Supply Water (Reservoir)

Sedimentation Pond 5

Sedimentation Pond 6

Noise Monitoring Photo Record

Ku Pyin Village

Pyi Nyaung Village