

Table of Contents

1.	Introductio	on	4
	1.1 Execu	itive Summary	4
	1.2 Purpo	se of Environmental Monitoring	4
	1.3 Health	n, Social and Environmental Department	5
	1.4 Enviro	onmental Performance Indicators and Monitoring Schedule	5
2.	Project In	formation	8
	2.1 Projec	ct Location	8
	2.2 Projec	ct Description	10
3.	Environm	ental Monitoring Program	11
	3.1 Air Qu	ality Monitoring	11
	3.1.1	Monitoring Location	11
	3.1.2	Monitoring Method	13
	3.1.3	Monitoring Result for Kiln Stack Emission	13
	3.1.4	Monitoring Result for Ambient Air Quality Monitoring	14
	3.1.5	Air Quality Index	15
	3.1.6	Monitoring Result for Dust Deposition	17
	3.1.7	Air Quality Mitigation Measures	19
	3.1.8	Evaluation	21
	3.2 Water	Quality Monitoring	23
	3.2.1	Monitoring Location	23
	3.2.2	Monitoring Result for Water Quality	24
	3.2.3	Water Quality Mitigation Measures	26
	3.2.4	Evaluation	29
	3.3 Noise	Monitoring	29
	3.3.1	Location Map of Noise Quality Monitoring Points	30
	3.3.2	Evaluation	30
	3.4 Waste	e Management Monitoring	31
	3.4.1	Generation of Non-Hazardous Waste	31
	3.4.2	Generation of Hazardous Waste	33
	3.4.3	Waste Management Mitigation Measures	33
	3.4.4	Evaluation	35
4.	Biodiversi	ty Action Plan Implementation	36
	4.1 Trans	act Survey	36
	4.2 Ecosy	stem Restoration Plantations	37
	4.3 Biodiv	rersity Awareness Training	39
5.	Corporate	e Social Responsibility	39
6.	Occupatio	onal Health and Safety	40
	6.1 Fire S	afety Measures	40
	6.2 Occup	pational Hazard Prevention and First Aid Training	40
7.	Conclusio	n and Recommendation	42
8.	Appendix		43

အကျဉ်းချုပ်အစီရင်ခံစာ

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (STC) သည် မြန်မာနိုင်ငံရှိ စီးပွားရေးကဏ္ဍအသီးသီးတွင် လုပ်ငန်းမျိုးစုံကို လုပ်ကိုင်ဆောင်ရွက်နေသော ရွှေတောင်ကုမ္ပဏီအုပ်စု၏ လုပ်ငန်းတစ်ခုဖြစ်ပြီး မန္တလေးတိုင်းဒေသကြီး သာစည်မြို့နယ်၊ ပြည်ညောင်ကျေးရွာရှိ ဘိလပ်မြေစက်ရံ စီမံကိန်းသည် STC ၏ clinker ထုတ်လုပ်မှုစွမ်းရည်ကို တစ်ရက်လျှင် တန်ချိန် ၁,၅၀၀ မှ တန် ၅,၅၀၀ နှင့် ဘိလပ်မြေပမာဏ တစ်နေ့လျှင် ၂,၈၀၀ တန် မှ ၇,၂၀၀ တန် အထိ တိုးချဲ့ရန် ရည်ရွယ်ပါသည်။ စီမံကိန်း၏တည်နေရာကို ပုံ (၁) တွင် ဖော်ပြထားပါသည်။

STC သည် ဘိလပ်မြေစက်ရုံတိုးချဲ့စီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း (EIA) ကို ဆောင်ရွက်ရန် အတွက် Environmental Resources Management (ERM)-Hong Kong, Limited အား တာဝန်ပေးအပ်ခဲ့ပါသည်။

ဘိလပ်မြေစက်ရံ ဧရိယာသည် ၂၀၁၆ ခုနှစ် မတ်လ ၃၁ ရက်နေ့တွင် သစ်တောဦးစီးဌာနမှ နှစ် ၅၀ သဘောတူညီချက်အရ ငှားရမ်းထားသော ဧက ၄၀၀ အတွင်း တည်ရှိပြီး ဘိလပ်မြေစက်ရံ ပထမလိုင်းမှ အသုံးပြုသည့် ၄၅ ဧက အပါအဝင် ဒုတိယလိုင်းမှ ၁၅ ဧက၊ ရေအရင်းအမြစ် ဧက ၅၀၊ ဝန်ထမ်းအိမ်ရာနှင့် စားသောက်ဆောင်အတွက် (၈) ဧက ခွဲဝေပေးထားပြီး ကျန် ၂၈၂ ဧကကို လမ်းပန်းဆက်သွယ်ရေးနှင့် သစ်ပင်စိုက်ပျိုးခြင်းအတွက် အသုံးပြုပါသည်။ ၂၀၁၆ ခုနှစ် မတ်လ ၃၁ ရက်နေ့တွင် သစ်တောဦးစီးဌာနမှ နှစ် ၅၀ သဘောတူညီချက်အရ ငှားရမ်းထားသော ၅၅ ဧကကို ဝန်ထမ်းများ၏ မိသားစုအိမ်ယာနှင့် အပန်းဖြေနေရာများအတွက် ခွဲဝေပေးထားပါသည်။

မန္တလေးတိုင်းဒေသကြီး သာစည်မြို့နယ် ကူပြင်ကျေးရွာတွင် တည်ရှိသော ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီ လီမိတက်၏ ဘိလပ်မြေ ၂၈၀၀ တန်မှ ဂ၂၀၀ တန်အထိ တိုးချဲ့ထုတ်လုပ်မည့် စီမံကိန်းအတွက် ပတ်ဝန်းကျင် ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာသည် ၂၀၁၉ ခုနှစ်၊ နိုဝင်ဘာလ၊ ၂၂ ရက်နေ့တွင် ပြည်ထောင်စုသမ္မတမြန်မာနိုင်ငံတော်၊ သယံဧာတနှင့်သဘာ၀ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဝန်ကြီးဌာန (MONREC) ၏ အတည်ပြုချက် ရရှိခဲ့ပြီး ၂၀၂၃ ခုနှစ်၊ သြဂုတ်လ၊ ၂၅ ရက်နေ့တွင် ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဆိုင်ရာ လိုက်နာဆောင်ရွက်မှု သက်သေခံလက်မှတ်ကိုလည်း ရရှိခဲ့ပြီးဖြစ်ပါသည်။ သို့ဖြစ်ပါ၍ STC သည် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းအစီရင်ခံစာတွင် ဖော်ပြထားသော ပတ်ဝန်းကျင်စီမံခန့်ခွဲမှု အစီအစဉ် (EMP) နှင့်အညီ ပတ်ဝန်းကျင်နှင့်လူမှုရေးဆိုင်ရာ စောင့်ကြပ်ကြည့်ရှုစစ်ဆေးမှု ကိစ္စရပ်များ (Environmental & Social Monitoring Program) ကို လိုက်နာဆောင်ရွက်ခဲ့ပြီး ယခုအခါတွင် ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဥပဒေနှင့် နည်းဥပဒေများ၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာနမှ ချမှတ်ထားသော လုပ်ထုံးလုပ်နည်းများ အတိုင်း ၂၀၂၄ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၅ ခုနှစ် ဧပြီလအထိ ဆောင်ရွက်ခဲ့သော ပတ်ဝန်းကျင်စောင့်ကြပ်ကြည့်ရှု စစ်ဆေးခြင်းအစီရင်ခံစာကို တင်ပြခြင်းဖြစ်ပါသည်။

ယခုအခါ Shwe Taung Cement Co., Ltd အနေဖြင့် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဆိုင်ရာ လိုက်နာဆောင်ရွက်မှု သက်သေခံလက်မှတ် (Environmental Compliance Certificate-ECC) မှာ ၁၄-၁၁-၂၀၂၄ ရက်နေ့တွင် သက်တမ်း ကုန်ဆုံးသွားပါသဖြင့် သက်တမ်းတိုးခွင့်ပြုနိုင်ပါရန် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာနသို့ လိုအပ်သောအချက်အလက် များနှင့်တကွ ၁၃-၁-၂၀၂၅ ရက်နေ့တွင် တင်ပြထားပြီးဖြစ်ပါသည်။ စာကို Appendix A1 တွင် ဖော်ပြထားပါသည်။

1. Introduction

1.1 Executive Summary

Shwe Taung Cement Company Ltd. (STC), part of the Shwe Taung Group (STG) which owns and operates a variety of businesses across various sectors in Myanmar, is planning a brownfield expansion of cement production at its existing cement plant in Pyi Nyaung Village, Thazi Township in the Mandalay region of Myanmar. The Project aims to expand STC's clinker production capacity from 1,500 tonnes per day (tpd) to 5,500 tpd and cement capacity from 2,800 tpd to 7,200 tpd. The location of the Project is shown in Figure-1.

STC commissioned Environmental Resources Management (ERM)-Hong Kong, Limited to undertake the Environmental Impact Assessment (EIA) for the cement plant expansion Project.

The cement plant area covers 400 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 (following three lease agreements renewed annually) including 45 acres used by the cement plant first line, 15 acres to be used by the second line (the Project) and 50 acres of dedicated water resources. Eight (8) acres are allocated for employee housing and catering services and the remaining 282 acres are planted or used for access roads. An adjacent area of 55 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 is allocated to employees' family housing and recreation activities.

Shwe Taung Cement Co., Ltd (STC) received the approval from Ministry of Natural Resources and Environmental Conservation (MONREC) for the project of cement production and expansion of cement capacity from 2800 tpd to 7200 tpd per day in Ku Pyin Village Tract, Thazi Township, Mandalay Region on 22nd November 2019 and received Environmental Compliance Certificate on 25th August 2023. Therefore, STC conducted environmental monitoring program in line with Environmental Management Plan and comply Environmental Conservation Law and Rules, the Procedure of ECD and submit this biannual environmental monitoring report for November 2024 to April 2025.

The Environmental Compliance Certificate (ECC) for Shwe Taung Cement Co., Ltd expired on 14 November 2024. In accordance with regulatory requirements, STC submitted a formal request for extension, along with all required supporting documents, to Environmental Conservation Department on 13 January 2025. A copy of the submission letter is provided in Appendix A1.

1.2 Purpose of Environmental Monitoring

Monitoring is a means of verifying the effectiveness of the management and mitigation measures contained within the management plans listed in STC EIA for Cement Plant.

- 1) The Environmental Engineers from HSE department of Cement Plant shall do the following:
 - Monitor and implement the this ESMP at site;
 - · Conduct Environmental monthly inspection checklist audit;
 - Monitor laboratory personnel while conducting their water sampling and testing method;
 - · Assist and monitor the implementation of Waste Management; and
 - Monitor and review the air emission test result for compliance recommendation.
- All inspection checklist audit finding that needs rectification shall be recorded in Environmental and Social tracker and will be assigned by Environmental Manager to concerned department head for rectification.
- 3) All water, effluent and air emission test results will be compiled for review and analyses by Environmental Manager and approved by Head of HSE.
- 4) All generated waste according to their classification and final disposal will be entered to waste management matrix for monthly report.
- 5) The Environmental Executive will be implementing and monitoring within the project area, new infestation and according to BAP.

1.3 Health, Social and Environment (HSE) Department

Shwe Taung Cement Co., Ltd. established HSE Department and responsibility of HSE Department are as follows.

- Implementation of Environmental Management Plans of approved EIA report of STC Cement Plant, Comply Rules and Regulations of Environmental Conservation, report Environmental Monitoring
- 2) Supervise third party stakeholders, contractors and other organizations for environmental monitoring program
- 3) Monitoring environmental impact and report the relevant documents
- 4) Promote the ability of employees by conducting knowledge sharing training and awareness on environmental conservation.

1.4 Environmental Performance Indicators and Monitoring Schedule

Physical, biological and social environmental management components of particular significance have been identified as performance indicators. A comprehensive monitoring plan for each performance indicator has been prepared for all phases of the Project, presented in Table -1.

Project Stage/	Potential Impact	Parameters to be Monitored	Location	Measurements	Frequency	Responsibility
Component						
Construction and Operation / Cement Plant	Inspection of mitigation compliance	General compliance with mitigation measures presented in the ESMP.	Project activity areas	Visual inspection of all active work areas and inspection of records. This includes the bulk storage of fuels and chemicals for protection of soil quality.	Weekly	HSE Team of Appointed Contractor And STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Stack emission from kiln system.	NOx, SO2, PM2.5, PM10 and O2	Discharge to kiln stack at new and existing plant	Real-time monitoring system	Continuous monitoring	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Stack emission from kiln system.	Check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime Manufacturing (for NOx, SO2, PM2.5, PM10)	Stack emissions from existing and new kilns.	Standard analytical methods	Monthly	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Stack emission from kiln system.	Check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime Manufacturing for: i. Cadmium + Thallium ii. Dioxins / Furans iii. Dust iv. Hydrogen Chloride v. Hydrogen Fluoride v. Hydrogen Fluoride vi. Mercury vii. Nitrogen Oxides viii. Particulate Matter PM 10 ix. Sulphur Dioxide x. Total Metals xi. Total Organic Carbon	Stack emissions from existing and new kilns.	Standard analytical methods	Within 12 months of operation commencement and then annually for the following two years (i.e. a total of three monitoring)	STC HSSE Department Head and Environmental Manager

Bi-Annual Environmental Monitoring Report

Operation / Cement Plant	Dust impacts	Dust deposition	Cement Plant, Kubyin and Pyi Nyaung Villages (<i>Figure 12.1</i>)	Dust deposition gauge	Monthly	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Dust impacts	Wind speed and direction	AQ1 (worker accommodation) (<i>Figure 5.1</i>)	Standard analytical methods	Continuous monitoring	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Discharge of runoff.	Check compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for BOD, COD, TSS, oil and grease, pH, total coliform bacteria, total nitrogen, total phosphorus). Volume of wastewater and treated wastewater discharged.	Treated wastewater discharge points at: 1. Coal Storage Area and Materials Handling Yards 2. Fuel Storage Area 3. Reservoir 4. Sedimentation Pond	Standard analytical methods	Monthly	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Discharge of treated wastewater	Check compliance with selected parameters (include BOD, COD, pH, SS, oil and grease, TN, TP and residual chlorine) of NEQEQ for Wastewater, Storm Water Runoff, Effluent and Sanitary Discharges (General Application). Check compliance with the full list of parameters on the NEQEQ for Wastewater, Storm Water Runoff, Effluent and Sanitary Discharges (General Application). Volume of wastewater and treated wastewater discharged.	Treated wastewater samples from: 1. Centralized tank of the wastewater treatment system.	Standard analytical methods	Monthly for selected parameters. Annually for full list of parameters	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Discharge of sludge	Check compliance with the full list of parameters on the NEQEG for Biosolids and Sludge Disposal.	Dewatered sludge samples from: 1. Each modular tank of the wastewater treatment system.	Standard analytical methods	Annually	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Discharge of treated wastewater.	Check compliance with effluent levels specified in Myanmar National Environmental Quality (Emission) Guidelines (2015)	Treated industrial wastewater discharge point from cement manufacturing process.	Standard analytical methods	Monthly	STC HSSE Department Head and Environmental Manager

Bi-Annual Environmental Monitoring Report

Operation / Cement Plant	Air Quality Impacts at ASR	for Cement and Lime Manufacturing (for TSS, pH, temperature increase). Volume of treated wastewater discharged. Check compliance with levels specified in Myanmar National Environmental Quality (Emission) Guidelines (2015) for NO2, SO2, PM2.5, and PM10.	AQ1 (worker accommodation), Kubyin Village and Pyi Nyaung Village (<i>Figure</i> 5.1)	Standard analytical methods	Monthly	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Noise	Check compliance with noise levels specified in Myanmar National Environmental Quality (Emission) Guidelines (2015) for noise.	AQ1 (worker accommodation), Kubyin Village and Pyi Nyaung Village (<i>Figure</i> 5.1)	Standard analytical methods	Twice per year	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Traffic Volume	Vehicle types and movements	Base camp and access road to the cement plant (<i>Figure 9.13</i>)	Count of vehicles for 24 hours	Once within 6 months of operation	STC HSSE Department Head and Environmental Manager
Operation / Cement Plant	Waste Managemen t	 Volumes of waste (per waste stream – i.e. hazardous and nonhazardous) disposed of at non- hazardous solid waste management facility (on-site / off-site) and/or incinerated and not reused, recycled or reclaimed; Volume of waste (per waste stream – i.e. hazardous and nonhazardous) reused, recycled or reclaimed; Percent change of volume of waste (per waste stream – i.e. hazardous and nonhazardous) produced compared to previous year; Percent change of volume of waste reused, recycled, reclaimed and disposed of compared to the previous year; Volume of contaminated soils generated and treated on-site; Description of implementation of segregation of waste streams (recyclables, general waste and hazardous waste): excellent / good / not good; 	Cement Plant	Waste volume records	Quarterly	STC HSSE Department Head and Environmental Manager

Bi-Annual Environmental Monitoring Report

Operation (Occupations	7. Reports of hazardous waste being mixed with general waste and vice versa: number; and 1. Reports of illegal dumping of wastes: number.	Comont Plant	Madical about	Pofere joining STC	STC Modical
Operation / Cement Plant	Uccupationa I Health and Safety	Monitor medical check data of Staffs Monitor incident related to 1. Indoor Air Quality 2. Heat 3. Noise and Vibration 4. Physical impact 1. Chemical Usage	Cement Plant	Medical check Review of incident statistics	Before joining STC, workers will undertake a preemployment medical check. For all workers, medical check will be undertaken every 36 months. For workers engaged in noisy works (e.g. hammering, grinding of raw materials),workers potentially exposed to radiation, welder and industrial vehicle drivers, medical check will be undertaken every 12 months.	STC Medical Doctor STC HSSE Department Head and Environmental Manager
Construction and Operation / Cement Plant	Biodiversity	Please refer to <i>Table 8.1</i> and <i>Table 8.2</i> of <i>Annex E.</i>	Please refer to Table 8.1 and Table 8.2 of Annex E.	Please refer to Table 8.1 and Table 8.2 of Annex E.	Please refer to Table 8.1 and Table 8.2 of Annex E.	Please refer to Table 8.1 and Table 8.2 of Annex E.

This includes the parameters to be measured, methods to be utilized, sampling locations, frequency of measurements, detection limits and responsibilities for implementation and supervision.

Impact monitoring will be undertaken during the life of the Project to verify the predicted levels of residual impacts from the Project and the effectiveness of the various management plans and mitigation measures.

Shwe Taung Cement Co., Ltd. will prepare an environmental monitoring report and submit to the Ministry of Natural Resources and Environmental Conservation, MONREC in every six months as per the EIA Procedure requirements.

2. Project Information

2.1 Project Location

Shwe Taung Cement Co., Ltd. Located in Kupyin Village Tract, Tharzi Township, Meikhtila District, Mandalay Region. The cement plant area covers 400 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 (following three lease agreements renewed annually) including 45 acres used by the cement plant first line, 15 acres to be used by the second line (the Project) and 50 acres of dedicated water resources. Eight acres are allocated for employee housing and catering services and the remaining 282 acres are planted or used for access roads. An adjacent area of 55 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 is allocated to employees' family housing and recreation activities. The cement plant is situated in a valley surrounded by a mudstone quarry to the west and a limestone quarry to the east, which falls within the Tha Pyae mountain range (*Figure -1*).

Figure-1: Location of STC Cement Plant

Bi-Annual Environmental Monitoring Report

2.2 Project Description

STC manufactures cement with clinker, gypsum and limestone (additive). Clinker is produced from limestone, mudstone, laterite and other materials. The clinker production and cement grinding capacity of the existing plant are 1,500 tpd and 2,800 tpd, respectively. The Project involves expanding the clinker production capacity to 5,500 tpd and 7,200 tpd of cement through the construction of a new rotary kiln and associated facilities. A dry process is used for the cement production and the second line will adopt a similar dry process as the first line, with additional facilities installed to achieve the increased capacity. These additional facilities will be installed within the existing 455-acre site.

All land leased to date by the company is state-owned forest land. With the exception of a small amount of land to accommodate the new transmission line, no new land is required to accommodate the expanded facilities.

Project components of the existing and expanded cement plant are shown in Figure-2. These include raw materials crushing area, handling area, clinker production area, cement grinding area, cement packing and dispatch area, coal staging area and office building.

During the reporting period, cement plant is operating stage.

Figure – 2: Project Components of the Existing and Expanded STC Cement Plant

Index

	Existing Cement Line Facilities	
1	- Raw Materials Crushing Area	1
2	- Handling Area	2
3	- Clinker Production Area	3
4	- Cement Grinding Area	4
5	- Cement Packing and Dispatch Area	5
6	- Coal Staging Area	
7	- Office	-

- Expansion Cement Line
- Raw Material Crushing Area
- 2 Handling Area
- Clinker Production Area
- Cement Grinding Area
- Cement Packing and Dispatch Area
 - Expansion Conveyor Line
 - Boundary Line

3. Environmental Monitoring Program

3.1 Air Quality Monitoring

Cement industry is a potential anthropogenic source of air pollution. Cement manufacturing is a highly energy intensive process in other word intensive fuel consumption for clinker making and resulting in emissions. The cement dust produced by cement manufacturing unit i.e. calcining, crushing, grinding, packing, loading/unloading are considered one of the most pollutants such as PM10, PM2.5, SO2 and NO2 which affect the surrounding environment.

Stack Emission monitoring from Kiln System is measured with Testo PG-350 Portable Combustion and Emission Analyzer. Ambient Air Quality monitoring is measured with portable HAZ-SCANNER™ EPAS device.

Continuous Emission Monitoring System (CEMS) was ordered in July 2019 and arrived to cement plant in November 2019. There was a flood disaster at manufacturing factory of CEMS at India, and that manufacturing delay issue was reported to ECD, MONREC. Sampling gases were not included in the CEMS procurement package and there was no supplier available in Myanmar. So STC has applied the import permit to Ministry of Commence, Myanmar with the recommendation of MONREC in March 2020, and those gases were arrived to cement plant in July 2020. The supplier from India couldn't come to Myanmar for installation, testing and commissioning of CEMS due to COVID19 situation in India and travel restriction in Myanmar. STC plant operation team was progressively installing the CEMS with the remote support of supplier from India. It took months to install as some of CEMS associated accessories such as piping system, electrical cables of sampling gases were not available in local market as those sampling gases are special gases and not many local suppliers are kept instock in Myanmar. So, we have ordered from China and some were still not arrived to cement plant and STC cement plant has been own locked down to prevent COVID19 situation during the reporting period. STC has lifted the lockdown on middle of March 2022 and is planning to complete the Testing & Commissioning within 2022.

At 16.9.2022, Continuous Emission Monitoring System (CEMS) was started to install both Line-1 and Line-2. The installation of the Continuous Emission Monitoring System (CEMS) was completed in September 2023. During the testing phase, several issues were identified: the data output cable is malfunctioning, and there is a need to change the sampling gas. STC has already notified the service provider. Currently, we are in the process of importing calibration/sampling specialty gases from overseas and awaiting resolution of licensing issues related to importing.

As per monitoring program, STC need to check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime Manufacturing for Cadmium + Thallium, Dioxins / Furans, Dust, Hydrogen Chloride, Hydrogen Fluoride, Mercury, Nitrogen Oxides, Particulate Matter PM 10, Sulphur Dioxide, Total Metals and Total Organic Carbon. However, there is no local service provider to analyze these full parameters for stack emission. Therefore, STC is still looking for oversea service providers to follow the monitoring program for air quality.

3.1.1 Monitoring Location

3.1.1.1 Stack Emission

Figure 3 and 4 show the location of Kiln Stack Emission Monitoring and Ambient Air Monitoring monthly by Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime manufacturing (for NOx, SO2, PM2.5, PM10 etc.) are the parameters measured.

Bi-Annual Environmental Monitoring Report

Figure - 3: Location of Kiln Stack Emission Monitoring

Line 1

Line 2

3.1.1.2 Location Map for Ambient Air Monitoring

Ambient air quality monitoring location had been selected by identifying potentially affected with consideration given to the prevailing wind conditions through Operation and Construction activities.

Figure – 4: Location Map of Ambient Air Monitoring at STC Cement Plant

Table-2: Monitoring Location

No	Monitoring Location	Latitude	Longitude
1	AQ1_Worker Accommodation	20°50'56.15"N	96°23'35.97"E
2	AQ2_Ku Pyin Village	20°53'25.83"N	96°23'25.07"E
3	AQ3_Pyi Nyaung Village	20°49'8.19"N	96°23'51.55"E

3.1.2 Monitoring Method

Stack emission monitoring is measured by Testo PG-350 Portable Combustion and Emission Analyzer. The instrument consists of the control unit (control unit for displaying readings and controlling the analyzer box) and the analyzer box (measuring instrument). Plug-type contacts, data cable or Bluetooth (option) are used to connect the control unit to the analyzer box.

Web link: https://www.manualslib.com/manual/1284324/Testo-350.html

The portable HAZ-SCANNER[™] EPAS wireless environmental perimeter air station is easily deployed as an ambient air quality monitor to measure and document critical U.S. EPA criteria pollutants including nitrogen dioxide, sulfur dioxide, ozone, carbon dioxide, particulates, VOCs, and more. The EPAS provides direct readings in real time with data logging capabilities.

Web link: https://www.skcinc.com/catalog/pdf/instructions/EPAS%20manual%20v.3.1.pdf

3.1.3 Monitoring Result for Kiln Stack Emission

Stack emission monitoring device was sent to Thailand since December 2023 for calibration. All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015).

	STACK EMISSION AIR QUALITY MONITORING											
ECD/WH	O/IFC/SGN G	uideline		Proc	luction Lin	e 1 Kiln Sta	ck					
Parameter	Averaging		Test Result									
	Period	Value	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025				
Carbon dioxide	1 hour	%	8.88	11.9	11.9	11.9	11.89					
Oxygen	1 hour	%	5.33	Sensor Error	Sensor Error	Sensor Error	Sensor Error					
Carbon monoxide	1 hour	625 mg/Nm3	61.25	5.72	57.5	52.5	196.25	Shut Down				
Nitrogen oxides	1 hour	600 mg/Nm3	103.18	0	45.56	143.38	42.88					
Sulphur dioxide	1 hour	400 mg/Nm3	2.86	5.72	2.86	14.3	2.86					

Table – 3: Summary of Stack Emission Monitoring for Line 1 Kiln Stack

Table – 4: Summary of Stack Emission Monitoring for Line 2 Kiln Stack

	STACK EMISSION AIR QUALITY MONITORING												
ECD/WHO	D/IFC/SGN Gu	ideline		Pro	duction Lir	ne 2 Kiln St	ack						
	Averaging Period		Test Result										
Parameter		Value	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025					
Carbon dioxide	1 hour	%	11.9	11.89	11.9	11.9	11.89	11.88					
Oxygen	1 hour	%	Sensor Error	Sensor Error	Sensor Error	Sensor Error	Sensor Error	Sensor Error					
Carbon monoxide	1 hour	625 mg/Nm3	63.75	115	7.5	15	196.25	386.25					
Nitrogen oxides	1 hour	600 mg/Nm3	187.6	206.36	18.76	6.7	131.32	46.9					
Sulphur dioxide	1 hour	400 mg/Nm3	5.72	5.72	2.86	0	5.72	0					

3.1.4 Monitoring Result for Ambient Air Quality Monitoring

Table - 5: Summary of Ambient Air Quality Monitoring at Plant Site

Ambient Air Monitoring by Haz-scanner									
Machine Name: Haz	Operator: Nay Hlaing Oo								
					Worker	Accommo	dation		
	ECD/ W Guid	/HO / IFC deline				Test	Result		
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
Nitrogen dioxide		200	3.63	118.68	58.53	58.44	81.67	84.96	85.28
Ozone		100	-	77.94	28.59	32.38	33.67	35.10	38.10
PM10		50	-	5.27	63.28	49.34	117.34	122.60	92.39
PM2.5	24 hours	25	-	2.08	4.78	5.32	6.21	6.71	9.04
Sulphur dioxide		20	<dl< th=""><th>2.48</th><th>7.98</th><th>4.59</th><th>14.39</th><th>41.36</th><th>62.78</th></dl<>	2.48	7.98	4.59	14.39	41.36	62.78
Carbon dioxide		ppm	-	0	7.79	6.29	134.18	141.72	46.55
Carbon monoxide]	10 ppm	-	0.10	0.07	0.09	0.24	0.35	0.35

Table - 6: Summary of Ambient Air Quality Monitoring at Pyi Nyaung village

Ambient Air Monitoring by Haz-scanner									
Machine Name: Haz-scanner (FPAS)					Operator: Nay Hlaing Oo				
				Location	: Pyi Nyau	ing Villag	e		
	ECD/ W Guid	/HO / IFC deline				Test	Result		
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
Nitrogen dioxide		200	10.1	54.53	64.48	59.62	67.49	114.86	145.15
Ozone		100	-	34.35	30.21	30.42	30.75	42.52	50.00
PM10		50	76.3	43.74	51.86	84.13	160.95	135.58	Sensor Error
PM2.5	24 hours	25	37.4	7.59	6.80	6.49	7.77	8.89	7.17
Sulphur dioxide		20	<dl< th=""><th>16.60</th><th>10.95</th><th>31.68</th><th>75.51</th><th>119.34</th><th>33.97</th></dl<>	16.60	10.95	31.68	75.51	119.34	33.97
Carbon dioxide]	ppm	-	0.03	0.80	70.69	136.06	48.97	21.66
Carbon monoxide		10 ppm	-	0.08	0.11	0.22	0.41	0.62	0.23

Table – 7: Summary of Ambient Air Quality Monitoring at Ku Pyin village

Ambient Air Monitoring by Haz-scanner											
Machine Name: Haz	-scanner (El			Operator: Nay Hlaing Oo							
				Location: Ku Pyin Village							
	ECD/ W Guid	ECD/ WHO / IFC Guideline			Test Result						
Parameter	Average Period	Guideline Value in µg/m3	Baseline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025		
Nitrogen dioxide		200	10.3	83.30	67.18	63.51	73.08	87.93	111.15		
Ozone		100	-	48.19	33.82	32.06	35.69	33.53	48.11		
PM10		50	32.2	19	24.24	33.29	69.54	61.13	37.51		
PM2.5	24 hours	25	19.9	5.71	4.92	7.23	8.77	7.71	8.97		
Sulphur dioxide		20	<dl< th=""><th>19.93</th><th>6.14</th><th>8.92</th><th>24.57</th><th>43.93</th><th>54.30</th></dl<>	19.93	6.14	8.92	24.57	43.93	54.30		
Carbon dioxide		ppm	-	0.039	2.18	81.88	129.43	14.55	48.30		
Carbon monoxide		10 ppm	-	0.1	0.08	0.12	0.22	0.27	0.18		

*Note: This data submitted to ECD on a monthly basis

Ambient air quality results are attached in Appendix-C.

3.1.5 Air Quality Index

The HAZ-SCANNER[™], ambient air quality monitoring system, provides a comprehensive data of current air contaminants in a project location. Then, air monitoring data of pollutants is processed into a dimensionless unit called the "Air Quality Index" (AQI); it serves as an information medium for the people to know the air quality health of their location and takes preventative steps accordingly (public participation). As instructed from Meiktila ECD to HSE Department in September 2023, STC has updated this bi-annual monitoring report and verified with Meiktila ECD on the reporting format during last quarter of 2023. Meiktila ECD accepted the updated report during January 2023. Therefore, STC has updated the AQI results in all bi-annual monitoring reports of STC Cement Plant.

The AQI is divided into six categories. Each category corresponds to a different level of health concern. Each category also has a specific color. Thus, the AQI is a beneficial tool for the company, public, stakeholders, and regulators to understand the current state of air quality. The color makes it easy for people to quickly determine whether air quality is reaching unhealthy levels in their communities.

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

Figure - 5: AQI Basics for Ozone and Particle Pollution

SHWE TAUNG CEMENT CO.LTD.

Bi-Annual Environmental Monitoring Report

	Air Quality Index (AQI)											
Machino Na	mo: Haz coa	nnor	Operat	or: Nay I	Hlaing Oo	2						
(EPAS)	ame. naz-sca		Locatio	Location: Worker Accommodation								
							AQI Re	sults				
Parameter	Averaging Period	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group			
PM ₁₀	24 hour	ug/m3	5	55	45	82	84	69	People with respiratory disease are the group most at risk.			
PM _{2.5}	24 hour	ug/m3	11	26	29	34	37	50	People with respiratory or heart disease, the elderly and children are the groups most at risk.			
Carbon monoxide	8 hour	ppm	1	0	0	2	3	3	People with heart disease are the group most at risk.			
Ozone	8 hour	ppb	36	13	15	16	16	18	Children and people with asthma are the groups most at risk.			
Nitrogen dioxide	1 hour	ppb	61	29	29	41	42	42	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.			
Sulphur dioxide	1 hour	ppb	0	4	1	7	21	33	People with asthma are the group most at risk.			

Table – 8: Summary of AQI at Plant Site

Table – 9: Summary of AQI at Pyi Nyaung Village

Air Quality Index (AQI)											
Machina Na	mo: Haz scal	nnor	Operat	or: Nay I	-Ilaing Oc)					
(EPAS)	inte. naz-scai		Locatio	Location: Pyi Nyaung Village							
				AQI Results							
Parameter	Averaging Period	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group		
PM ₁₀	24 hour	ug/m3	40	47	65	103	91	Sensor Error	People with respiratory disease are the group most at risk.		
PM _{2.5}	24 hour	ug/m3	42	37	36	43	49	39	People with respiratory or heart disease, the elderly and children are the groups most at risk.		
Carbon monoxide	8 hour	ppm	0	1	2	5	7	2	People with heart disease are the group most at risk.		
Ozone	8 hour	ppb	16	14	14	14	19	23	Children and people with asthma are the groups most at risk.		
Nitrogen dioxide	1 hour	ppb	27	32	29	33	58	76	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.		
Sulphur dioxide	1 hour	ppb	9	6	17	40	62	17	People with asthma are the group most at risk.		

	Air Quality Index (AQI)											
			Operat	or: Nay I	Hlaing Oo)						
(EPAS)	ame: Haz-sca	nner	Locatio	Location: Ku Pyin Village								
				AQI Results								
Parameter	Averaging Period	Unit	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Sensitive Group			
PM ₁₀	24 hour	ug/m3	18	22	31	58	54	34	People with respiratory disease are the group most at risk.			
PM _{2.5}	24 hour	ug/m3	32	27	40	48	43	49	People with respiratory or heart disease, the elderly and children are the groups most at risk.			
Carbon monoxide	8 hour	ppm	1	0	1	2	2	1	People with heart disease are the group most at risk.			
Ozone	8 hour	ppb	22	16	15	17	16	22	Children and people with asthma are the groups most at risk.			
Nitrogen dioxide	1 hour	ppb	42	33	31	36	43	56	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.			
Sulphur dioxide	1 hour	ppb	10	3	4	13	23	29	People with asthma are the group most at risk.			

Table – 10: Summary of AQI at Ku Pyin Village

3.1.6 Monitoring Result for Dust Deposition

STC monitored dust deposition with 15 points at cement plant and limestone quarry, cement plant housing/ accommodation area, Ku Pyin and Pyi Nyaung village. The use of fabric/bag filter system and electrostatic precipitator to collect and control fine suspended particulate emissions are implemented in both lines of cement plant. Water suppression was also undertaken on the roads by using the water from sedimentation ponds to mitigate dust emission on surrounding area in plant site, quarries and plant accommodation area.

Please refer Table - 12 for dust deposition monitoring results from November 2024 to April 2025.

No	Monitoring Location	Latitude	Longitude
1	STC Accommodation (Ingyin Hostel)	20°51'23.1"N	96°23'34.7"E
2	STC Accommodation (55acres)	20°50'54.5"N	96°23'34.8"E
3	Ku Pyin (Behind Library)	20°53'26.9"N	96°23'24.8"E
4	Ku Pyin (Primary School)	20°53'25.7"N	96°23'33.6"E
5	Pyi Nyaung (Near Main Road)	20°49'09.5"N	96°23'50.9"E
6	Pyi Nyaung (Information Center)	20°49'03.9"N	96°23'40.6"E

Table – 11: Dust Monitoring Locations

Bi-Annual Environmental Monitoring Report

Figure – 6: Dust Deposition Monitoring

Table – 12: Dust Deposition Monitoring results at Cement Plant Accommodation, Ku Pyin and Pyi Nyaung villages from November 2024 to April 2025

Samplers: Nay Hlaing Oo		Dust Deposition Monitoring										
		Test Result										
Parameter	Australia & New Zealand Guideline (g/m2/Day)	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025					
STC Accommodation (Ingyin Hostel)		0.64	0.89	0.78	0.65	0.47	0.99					
STC Accommodation (55acres)		0.43	0.71	0.62	0.42	0.42	0.66					
Ku Pyin (Behind Library)	1.191	0.23	0.16	0.47	1.42	0.52	0.37					
Ku Pyin (Primary School)	(g/m2/Day)	0.39	1.58	0.34	0.51	0.40	0.32					
Pyi Nyaung (Near Main Road)		0.70	0.80	0.67	0.62	0.68	Damage					
Pyi Nyaung (Information Center)		0.42	0.43	0.35	0.64	Damage	1.23					

3.1.7 Air Quality Mitigation Measures

Table – 13: Air Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
Air Quality	 The discharge to kiln stack at both new and existing plant will be fitted with continuous emission monitoring capable of real-time measurement of NO2, SO2, Particulate Matter and O2 and transmitted to the operator control room. They will not exceed those outlined in Myanmar National Environmental Quality Emission Guidelines (2015) for cement and lime manufacturing and should be further reduced as far as practicable. New kiln stack shall be fitted with sampling platform and two sampling ports at 90 degrees. Sampling ports should be four-inch (minimum) inner diameter threaded pipe connections with a cap. This is primarily to allow calibration of in stack continuous monitoring of additional parameters if needed in the future. 	The Continuous Emission Monitoring System (CEMS) was ordered in July 2019 and arrived at the cement plant in November 2019. A flood at the CEMS manufacturing factory in India caused delays, reported to ECD, MONREC. Sampling gases were not included in the procurement package, and no local supplier was available, so STC applied for an import permit in March 2020. The gases arrived in July 2020. Due to COVID-19 travel restrictions, the Indian supplier couldn't come for installation, which STC's team handled with remote support. Installation was delayed due to unavailable accessories, which were ordered from China. STC lifted its lockdown in March 2022, planning to complete testing and commissioning within the year. Installation of CEMS on both lines started on September 16, 2022, and was completed in September 2023. During testing, issues with the data output cable and sampling gas were identified. STC notified the service provider and is currently importing calibration gases, awaiting resolution of licensing issues.	
	 Emission concentrations of NOx, SO2 and PM from existing and proposed kiln system and clinker cooler will exceed those outlined in Myanmar National Environmental Quality Emission Guidelines (2015) for cement and lime manufacturing and should be further reduced as far as practicable. 	Regular monitoring (See in Section 3.1.3 for stack emission monitoring results)	Adorshy Back (Reington Marthon) Re 2 Brief Re 2 Brief De 2 Brie
	 An occupational exposure monitoring program for workers will be put in place to monitor indoor air quality. 	Completed by HR & OHS. Result TBA ECD conducted test for Exposure Limits	
	 Reduce number of material transfer points by simple, linear layout for material handling operations; 	Completed and installed for line 1 and line 2 design	Note: The second s
	Use of enclosed belt conveyors for material transportation and emission controls at transfer points;	Implementation on line 2	
	 Regular cleaning of conveyor belt systems; 	Included in PME scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

Bi-Annual Environmental Monitoring Report

		THE REAL PROPERTY OF TAXABLE PARTY.
 Crushed and blended raw materials should be stored in covered or closed bays; 	Additional silo constructed in line 2	
 Pulverized coal should be stored in silos or closed storage; 	Implemented	
Clinker should be stored in covered or closed bays or silos with dust extractions;		The second se
 Routine plant maintenance to keep air leaks and spills to a minimum; 	Included in PME and PRD scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Material handling processes including crushing operations, raw milling and clinker grinding should be undertaken in enclosed systems maintained under negative pressure by exhaust fans. Dust should be removed using cyclones and bag filters; and 	Equipped with cyclones and bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Implementation of automatic bag filling and handling systems; 	Implemented both line 1 and line 2	
 Use of electrostatic precipitators (ESPs) or fabric filter systems to collect and control fine suspended particulate emissions in the kiln gases; 	Installed (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Use of cyclones to separate larger particulates of cooler gases followed by fabric filters and finally 	Equipped with cyclones and bag filters line 1 and line 2 (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Mild dust should be captured and recycled using fabric filters within the mill. 	Equipped with bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

Bi-Annual Environmental Monitoring Report

3.1.8 Evaluation

According to Air Quality Monitoring of Stack Emission and Ambient Air Quality Monitoring, the results of stack emission monitoring are under guideline value while those of AAM are exceeded in some values during summer season. Ambient Air monitoring was monthly tested at location of Sensitive Air Respecters such as Cement Plant Accommodation, and nearby villages which are Pyi Nyaung and Ku Pyin as in Cement Plant EIA report. All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015), except higher results of PM₁₀ and SO₂ during summer season. These increases are likely attributable to frequent forest fires initiated by some local villagers for land clearing, as well as slash-and-burn practices conducted by Forest Department for teak plantation management near the STC area.

Figure - 7: Forest Fire affected the Ambient Air Quality around STC Cement Plant

STC has investigated the reason of SO₂ result more than Myanmar National Environmental Quality (Emission) Guidelines (2015) as STC uses the low Sulphur content in coal that used as fuel for cement production as stated in STC Cement Plant EIA report. STC has analyzed the monitoring results from the portable HAZ-SCANNER[™] EPAS device and found out that SO₂ results were a lot higher during day time and less value at night time. This indicate that the plant is operating 24hours and it couldn't be less during night time.

AQI across the globe considers the number of pollutants (most of the developed countries and some developing countries considers PM_{2.5} to measure the overall status of air quality being monitored), averaging time for which pollutants are measured, calculation method to compute air quality indices for each pollutant, calculation mode to aggregate the overall index, scale of an index, categories, color coding scheme, and related descriptive terms of the pollutants. There are many air quality index models to represent air quality level in the world. STC selected to assess ambient air quality results in Pyi Nyaung area based on AirNow, which is a partnership with the U.S. Environmental Protection Agency (EPA), color-coded index standards.

By analyzing all the AQI results, it is noted that $PM_{2.5}$ values are majorly impacted by human activities (forest firing & open burning, etc.) from surrounding environment. STC will raise the public

Bi-Annual Environmental Monitoring Report

awareness among cement plant community and also disclosed these air quality monitoring results and AQI results at Pyi Nyaung Information Center and Ku Pyin library according to STC Stakeholder Engagement Plan.

STC engaged 3rd party Environmental consultant as auditor and the auditor advised that this was the case as forest fires in the hills surrounding the plant were numerous at the time of the audit and consistent haze was present over the general area. The Auditor considered that the forest fires are contributing to elevated particulate readings being recorded by STC and elevated readings cannot be solely apportioned to emissions from cement plant and associated facilities.

Therefore, STC was looking other factors that can be impacting on SO₂ results and found out that it was related to emission of mobile vehicles that were higher SO₂ than Kiln emission by using Testo PG-350 Portable Combustion and Emission Analyzer at STC Apache cement plant. There were a lot of heavy machineries and trailer trucks movement during day time and only trailer trucks movement during night time. So STC has raised awareness among the vehicle drivers to stop when they are parking or waiting, with sticker campaign "Turn Off Your Engine While Waiting or Parked" at Apache Cement plant.

These were a notable deterioration in regional air quality was found at Pyi Nyaung area. Moreover, cold air during the cold season can't hold as much moisture, and so the air is usually drier during winter. These habits were also noted on contributing factors of higher results of PM_{10} and $PM_{2.5}$.

Moreover, there were regular device servicing and maintenance with NANOVA, authorized supplier of Myanmar of EPAS device, in January and March 2020. STC noted the Haz-scanner EPAS SO2 sensor has some issue as the ambient air quality monitoring result of SO2 was complied with Myanmar National Environmental Quality (Emission) Guidelines (2015) after NANOVA, the local authorized support of Myanmar.

Carried out sensor checking, testing using zeroing filter and internal tube cleaning by supplier 3 times due to sensor error reading of Haz-scanner devices.

The use of fabric filter system and electrostatic precipitator to collect and control fine suspended particulate emissions are implemented. Water suppression are also undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix-A2)

Moreover, to safeguard occupational health, STC collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

Figure – 8: Occupational Health Care Records by Social Security Board

SHWE TAUNG Building Materials

3.2 Water Quality Monitoring

Monitoring of water quality regularly is quite necessary for the assessment of water quality for beneficial purposes. Operation is dry process and do not generate wastewater. Sanitary wastewater from office and household are discharged to bio tank and treated wastewater are monitored in compliance with the NEQEG on BOD, COD, pH, SS, oil & grease, TN & TP and as per WHO Drinking water guidelines.

3.2.1 Monitoring Location

As per monitoring program, STC monthly monitor Sedimentation Pond 5 near coal storage area and reservoir for discharge of runoff, Sedimentation Pond 7 for industrial wastewater and biotank effluent for discharge of treated wastewater. In addition, STC monitors water quality in Ku Pyin and Ye Shin Streams to support community health and safety. Figure 9 illustrates the locations of the water quality sampling points. The monitoring parameters are based on WHO Drinking Water Guidelines and IFC Effluent Discharge Standards, and include pH, color, turbidity, iron, BOD, COD, and other relevant indicators.

No	Sampling Location	Latitude	Longitude
1	Ku Pyin Stream	20°53'22.92"N	96°23'23.92"E
2	Ye Shin Stream	20°50'24.08"N	96°23'26.81"E
3	Supply Water (Reservoir)	20°51'35.3"N	96°23'37.70"E
4	Sedimentation Pond 5 (Coal Storage Area)	20°52'10.60"N	96°23'16.67"E
5	Sedimentation Pond 7 Effluent (Industrial Wastewater)	20°51'54.88"N	96°23'32.49"E
6	Biotank Effluent	20°50'51.17"N	96°23'45.02"E

Table-14: Water Sampling location

3.2.1.1 Location Map of Water Quality Sampling Points

Figure – 9: Water Quality Sampling Points

3.2.2 Monitoring Result for Water Quality

Table-15: Ku Pyin Stream Water Quality Monitoring Result

Ku Pyin Stream Water Supply Water Analysis										
ITEM	WHO Drinking Water Guideline	EQEG Guideline	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	
рН	6.5 - 8.5	6 - 9	6.3	8.3	7.4	7.9			7.4	
Color	15 PCU	-	-	5	0	0			5	
Turbidity	5 NTU	-	-	0.48	1.18	2.25			2.11	
Calcium hardness	500 mg/l	-	-	*	*	*	No	No	*	
Chloride (Cl)	250 mg/l	-	-	*	*	*	Water	Water	*	
Sulphate (SO4)	200 mg/l	-	-	10	10	10			10	
TSS	50 mg/l	50 mg/l	23	1	0	6			6	
Nitrate	50 mg/l	-	-	11.9	8.1	9,3			4	
Remark: According to	the current situation in	Myanmar, there is chemical reagents	an issue to buy	some chemi	cal reagent t	o analyze so	me water q	uality parame	ters.	

Table-16: Ye Shin Stream Water Quality Monitoring Result

	Ye Shin Stream Supply Water Analysis (Near Pyi Nyaung)										
ITEM	WHO Drinking Water Guideline	EQEG Guideline	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025			
рН	6.5 - 8.5	6 - 9	8	7.1	7.8	7.3	7.7	7.2			
Color	15 PCU	-	0	0	0	5	20	5			
Turbidity	5 NTU	-	3.41	2.06	0.71	0.6	0.85	0.83			
Calcium hardness	500 mg/l	-	*	*	*	*	*	*			
Chloride (Cl)	250 mg/l	-	*	*	*	*	*	*			
Sulphate (SO4)	200 mg/l	-	20	10	10	20	10	10			
TSS	50 mg/l	50 mg/l	12	3	2	2	1	3			
Nitrate	50 mg/l	-	6.3	4.2	9.9	3.3	11.8	5.2			
Remark: According to the cu	rrent situation in Myanma	r, there is an issue "	to buy some c	hemical reage	ent to analyze	some water qu	ality parame	ters.			

Table-17: Lower Reservoir Water Quality Monitoring Result

Lower Reservoir Supply Water Analysis									
ITEM	WHO Drinking Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6.5 - 8.5	6 - 9	7.6	8.2	7.5	7.4	7.7	8.6	7.6
Color	15 PCU	-	-	20	20	20	35	55	30
Turbidity	5 NTU	-	-	2.8	4.31	5.56	5.22	10.9	2.13
Calcium hardness	500 mg/l	-	-	*	*	*	*	*	*
Chloride (Cl)	250 mg/l	-	-	*	*	*	*	*	*
Sulphate (SO4)	200 mg/l	-	-	10	20	20	10	10	10
TSS	50 mg/l	50 mg/l	11	11	16	15	17	43	31
Nitrate	50 mg/l	-	-	4.9	4.7	3.6	4.8	13.5	6
Remark: According to Therefore, we express	the current situation in N	Ayanmar, there is hemical reagents	s an issue to buy s s"	ome chemic	cal reagent t	o analyze so	me water qu	uality param	eters.

Lower reservoir supply water test results from external laboratories are attached in Appendix-(B-4).

Sedimentation Pond 5 Surface Water Test Result									
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025
рН	6~9	6~9	7.6	8.2	7.5	7.4	7	7.2	7.5
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	41.5	*	*	*	*	*	*
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	6.5	*	*	*	*	*	*
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	215.5	35	15	46	23	25	36
Total Nitrogen	10 mg/l	10 mg/l	1.7	2.03	1.94	0.65	0.86	2.09	1.2
Total Nitrate	44.29 mg/l	-	-	9	8.6	2.9	3.8	9.3	5.3
Total Phosphorous	2 mg/l	2	0.06	0.2	0.3	0.2	*	*	*
Oil and grease	10 mg/l	10 mg/l	DL	*	*	*	*	*	*
Total Coliform Bacteria	-	100 ml	45.50	*	*	*	*	*	*
Remark: According to the cu Therefore, we express as "*"	irrent situation in My	anmar, there is mical reagents'	an issue to buy s	ome chemic	al reagent to	analyze so	me water qua	ality parame	ters.

Table-18: Sedimentation Pond-5 Surface Water Test Result

Sedimentation Pond 7 Effluent Water											
Parameters	arameters IFC Waste EQEG Baseline Water Guide Ine Ine Nov 2024 2025 2025 2025 2025 2025										
рН	6~9	6~9	-	8.5	8.2	8.1	8.8	8.0	7.9		
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	-	*	*	*	*	*	*		
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	-	*	*	*	*	*	*		
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	-	5	2	10	8	10	10		
Total Nitrogen	10 mg/l	10 mg/l	-	2.46	2.69	0	3.14	2.3	1.7		
Total Nitrate	44.29 mg/l	-	-	10.9	11.9	0	13.9	10.2	7.5		
Total Phosphorous	2 mg/l	2	-	0.4	0.2	0.1	*	*	*		
Oil and grease	10 mg/l	10 mg/l	-	*	*	*	*	*	*		
Total Coliform Bacteria	-	100 ml	-	*	*	*	*	*	*		
Remark: According to the cu	irrent situation in M	yanmar, there i	s an issue to buy s"	some chemic	al reagent to	analyze son	ne water qua	ality parame	ters.		

Table – 20: Bio	Tank Effluent Discharge to Sedimentation Pond 9 Test Results

Bio Tank Effluent Discharge to Sedimentation Pond 9										
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	
рН	6~9	6~9	-	8.8	7.2	8.1	7.4	7.4	7.2	
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	-	*	*	*	*	*	*	
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	-	*	*	*	*	*	*	

Bi-Annual Environmental Monitoring Report

Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	-	63	73	143	276	141	142
Total Nitrogen									
rotar Nitrogen	10 mg/l	10 mg/l	-	2.37	10.16	2.71	3.88	2.66	8.85
Total Nitrate	44.29 mg/l	-	-	10.5	45	12	17.2	11.8	39.2
Total Phosphorous	2 mg/l	2	-	1.2	7.4	3.4	*	*	*
Oil and grease	10 mg/l	10 mg/l	-	*	*	*	*	*	*
Total Coliform Bacteria	-	100 ml	-	*	*	*	*	*	*
Remark: According to the current situation in Myanmar, there is an issue to buy some chemical reagent to analyze some water quality parameters. Therefore, we express as "*" for "No stock of chemical reagents". Biotank Sludge results from external laboratory are attached in Appendix-B8.									

Laboratory results for water quality are attached in Appendix-B.

3.2.3 Water Quality Mitigation Measures

Table - 21: Water Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
Surface Water	 Implementing storm water management practices to manage the flow of storm-water, prevent uncontrolled migration and minimize erosion and sediment transport from project facilities and disturbed areas. Construction of a dedicated drainage network to intercept and diversion runoff; 	Constructed stormwater drains around the cement plant channel to sedimentation ponds	
Quanty			Figure (2) Drainage for catchment area
	 Divert runoff from the mudstone quarry to an appropriately sized and maintained sedimentation pond to allow adequate retention time for suspended solids to settle; 	Constructed sedimentation pond dual stage.	Sde providio provi o prim. vaser i sub fazio al local de la dela del ardierita del and dela dela dela dela dela dela dela del
			P on the second se

	 Divert runoff from the limestone quarry to the wetland created by STM via a weir to remove suspended solids before entering the wetland; 	Constructed sedimentation pond dual stage.	Fight 15 Densege for carbinage res
	 Baffles or other measures to reduce the velocity of runoff downhill slopes should be installed to minimize scouring; 	Visual monitoring by MNE	Furge Of Zenius For shows the second
	 Exposed areas and overburden dumps should be revegetated as quickly as possible. 	Tree planting during monsoon season	
	 STM will prepare and implement a Storm water Management Plan considering the mitigation committed above. 	Plan have been developed and construction on progress for Line 2 area. Line 1 area was constructed since 2014.	Figue 12 fam retri far, serut ale fat fræfars inte era
	 All areas used to store and/or handle coal, laterite and limestone should be paved and surrounded by perimeter drains. For the coal storage area, it should be covered; 	Implemented and covered during monsoon season	In frant of SOF Ares
•	 Runoff from the laterite and limestone staging areas shall be diverted to retention ponds and may be used for greening, dust suppression or discharged to the onsite reservoir. 	Constructed sedimentation pond dual stage and reuse for gardening and dust control.	

 For the coal storage area, STM has agreed to cover this area. Water form the root will be diverted via storm water drains to and the near the root will be diverted via storm water drains to and the root will be anosite reason. Fund for diacted by the interceptor drains (small volume) within the overer do all storage area. Discharges into the reservoir and any to use of the root will be diverted for treatment at the wastewater treatment plant. Conducted by LQC reaction the root will be diverted for treatment at the wastewater treatment plant. Discharges into the reservoir and any numof discharge to the roots in comparison to will be more than a treatment of the form the root will be diverted for result documented (result documented treatment at the wastewater treatment plant. Discharges from the isolated be installed at at area used to store bulk fuel and other fammables. The fuel storage facility should be constructed on bunded hardstand with containment stificant for 10% of the volume of the single largest tank; Discharges from this bunded area should pass through an all-water separator; Spill Response Plan should be developed and implemented, (conducted awareness training and deliver paraphits to relevant events and the plant) Approved and implemented, (conducted awareness training and deliver paraphits to relevant events and the plant) Discharges from the plant) Approved and implemented, (conducted awareness training and deliver paraphits to relevant events and the plant) Approved and implemented, (conducted awareness training and deliver paraphits to relevant events and the plant) Discharges from the cast at aging area. Approved and implemented, (conducted awareness training and deliver paraphits to relevant events) Discharges from the cast at aging area. Discharges from the cast at aging area.			
 Discharges from the service and any runoff discharged to surface streams should be monitored pulcC result documented (Ree in 4.3.2 water result) Lightning protection should be installed at all areas used to store bulk fuel and other flammables; Lightning protection should be installed at all areas used to store bulk fuel and other flammables; The fuel storage facility should be constructed on should be installed at all areas used to store bulk fuel and other flammables; Equipped. Equipped. Spill Response Plan should be developed and implemented (conducted awareness training and deliver panets) to relevant to relevant ensure the plan) Spill Response Plan should be developed and implemented to relevant ensure the plan) Approved and implemented (conducted awareness training and deliver genetic to relevant ensure the plan) Discharges from the plan) Conducted and monitored bulk fuel and other flammables; Discharges from the bunded area should in pass through an eil-water separator; Discharges from the bunded area should ensure the planet to relevant ensure through an eil-water separator; Spill Response Plan should be developed and implemented; (conducted awareness training and deliver panethel to relevant ensure through an eil-water separator; Discharges from the plan) Discharges from the planether to relevant ensure through an eil-water separator; Discharges from the planether to relevant ensure through an eigen through an eigen through an eil-water separator; Discharges from the planether to relevant ensure through an eigen through and through and th	 For the coal storage area, STM has agreed to cover this area. Water from the roof will be diverted via storm water drains to retention ponds and may be used for greening, dust suppression or discharged to the onsite reservoir. Runoff collected by the interceptor drains (small volume) within the covered coal storage area will be diverted for treatment at the wastewater treatment plant. 	Upgraded sedimentation pond near coal storage area.	
 Lightning protection should be installed at all areas used to store bulk fuel and other flammables; The fuel storage facility should be constructed on bunded hardstand with containment sufficient for 110% of the volume of the single largest tank; Discharges from this bunded area should pass through an oil-water separator; Spill Response Plan should be developed and implemented; (conducted awareness training and deliver panyhelt to relevant employees in the plant) Approved and implemented; (conducted awareness training and deliver panyhelt to relevant employees in the plant) Discharges from the coal staging area excertionation of the coal staging area exertionation of the coal stagent exertication of the coal stagent exerticat	 Discharges into the reservoir and any runoff discharged to surface streams should be monitored monthly for compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for TSS, oil and grease, pH). 	Conducted and monitored by LQC result documented (See in 4.3.2 water result)	<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
 The fuel storage facility should be constructed on bunded hardstand with containment sufficient for 110% of the volume of the single largest tank; Discharges from this bunded area should pass through an oil-water separator; Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant) Approved and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant) Discharges from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pamphlet to relevant employees from the coal staging area deliver pa	 Lightning protection should be installed at all areas used to store bulk fuel and other flammables; 	Installed at fuel depot.	Southards and a service of the source of specific and a service of the source
 Discharges from this bunded area should pass through an oil-water separator; Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphilet to relevant employees in the plant) Approved and implemented; (conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted and implemented; (conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training and deliver pamphilet to relevant employees in the plant) Conducted awareness training aware the plant in the pla	 The fuel storage facility should be constructed on bunded hardstand with containment sufficient for 110% of the volume of the single largest tank; 	Equipped.	Constructed banded hardstand with containment for TSN of the solution of atoms field and mapped with obviews separative installed lighting protection pot.
 Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant) Approved and implemented Approved and implemented and implemented <l< td=""><td> Discharges from this bunded area should pass through an oil-water separator; </td><td>Installed</td><td>Construint bundler handstand with consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers of the values of stored had and support segment in the values of the values of stored had and support segment in the values of the values of stored had and support segment in the value of the values of stored had and support segment in the values of stored had and support segment in the value of stored had and support segment in the value of the values of stored had and support segment in the value of stored had and support segmen</td></l<>	 Discharges from this bunded area should pass through an oil-water separator; 	Installed	Construint bundler handstand with consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers for 11% of the values of stored had and support with drawater segment in consumers of the values of stored had and support segment in the values of the values of stored had and support segment in the values of the values of stored had and support segment in the value of the values of stored had and support segment in the values of stored had and support segment in the value of stored had and support segment in the value of the values of stored had and support segment in the value of stored had and support segmen
 Discharges from the coal staging area should be mentioned much for exampliance Conducted and maniformed by LOC 	 Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant) 	Approved and implemented	<text></text>
with Myanmar National Environmental result documented			 Hernicki and Antipartici

Bi-Annual Environmental Monitoring Report

Quality (Emissions) Guidelines for site runoff and wastewater discharges (for TSS, oil and grease, pH).	(See in Section 4.3.2 for water test result)	<image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
 Sanitary wastewater (includes toilet, sink, shower) should be discharged to the wastewater treatment plant and not be directly discharged to any water bodies. Kitchen flows should be discharged for treatment at dedicated grease trap / water purification unit and not be directly discharged to any water bodies. 	Constructed Bio Tank for treatment of sanitary wastewater.	
 Treated wastewater will be monitored monthly at the centralized treated wastewater tank to check compliance with the NEQEG on BOD, COD, pH, SS, oil and grease, TN, TP and residual chlorine and monitored annually for compliance with the full list of parameters on the NEQEQ for Wastewater, Storm Water Runoff, Effluent and Sanitary Discharges (General Application). Sludge generated from the wastewater treatment units will be dewatered to meet with the Myanmar NEQEG for Bio solids and Sludge Disposal before disposal to the non-hazardous solid waste management facility. Sludge samples from each modular tank will be checked yearly for compliance with the NEQEG for Bio solids and Sludge Disposal. 	Conducted and monitored by LQC result documented (See Section 3.2.2 for water result)	(See Section 3.2.2 for water result)

3.2.4 Evaluation

The establishment of sewage and sanitary waste management and storm water management is executing in plant site. Since the dry process is used for the cement production and the second line is also adopted a similar dry process as the first line, do not generate wastewater from first line and second line production. Discharge sanitary wastewater from plant office and household accommodation are diverted for treatment at bio tank and monthly monitored in compliance with the NEQEG guideline. Wheel washing bay shall be installed at the cement plant guardhouse to avoid cement trail trucks tracking dirt onto public sealed roads and generating dust.

3.3 Noise Monitoring

The nearest representative noise sensitive receptors (NSRs) that may potentially affect by the noise impact due to the Project are identified as Pyi Nyaung and Ku Pyin villages. STC operate noise monitoring twice a year in accordance with Mudstone Environmental Monitoring Plan and results are shown in Table 20 below:

3.3.1 Location Map of Noise Quality Monitoring Points

Figure - 10: Noise Quality Sampling Points

Table - 22: Noise Monitoring Locations

No	Noise Monitoring Location	Latitude	Longitude
1	Ku Pyin Village	20°53'20.47"N	96°23'27.58"E
2	Pyi Nyaung Village	20°49'4.58"N	96°23'40.42"E
3	Worker Accommodation	20°50'56.15"N	96°23'35.97"E

Table – 23: Noise	Monitorina	Results in	i Ku Pvin	n and Pv	i Nvauno	ı villade
2010 2011000	in or neor nig	1.00001100111				1 1 11 10 90

	Machine Name: GM1356-0/GM1356, Operator: Nay Hlaing Oo					
Noise Monitoring	Ku Pyin Village Pyi Nya		Pyi Nyaur	ng Village	Worker Accommodations	
	Day	Night	Day	Night	Day	Night
Monitoring Result	48	41	53	43	56	43
Baseline Result	-	-	-	-	58	57
NEQEG (Residential)	55	45	55	45	55	45
NEQEG (Industrial)	70	70	70	70	70	70

3.3.2 Evaluation

Noise monitoring was conducted at Ku Pyin and Pyi Nyaung Village using a calibrated Sound Level Meter (Model: GM1356-0/GM1356). The monitoring aimed to assess compliance with the Myanmar National Environmental Quality (Emission) Guidelines for both residential and industrial areas. All measured values were within the NEQEG limits for residential areas, and significantly lower than the limits for industrial areas. These results indicate that the current noise levels at the selected monitoring locations do not pose a significant impact on the surrounding communities and remain compliant with national environmental standards.

Bi-Annual Environmental Monitoring Report

3.4 Waste Management Monitoring

3.4.1 Generation of Non- Hazardous Waste

In Shwe Taung Cement Factory, collect non-hazardous waste generated from plant site and accommodation area every day and dispose them to Temporary Non-hazardous Storage Area. For kitchen wastes, compost or use as animal feed in nearby villages. On the other hand, dispose laboratory and clinical wastes to Meikhtila Incinerator, Meikhtila District, Mandalay Region, approved by Meikhtila City Development Committee and have plan to dispose hazardous wastes to Golden Dowa Eco-system Myanmar Co., Ltd., Accredited Waste Management Company. Figure 11, 12 and 13 shows location maps of waste disposal area and waste collection points.

Figure – 11: Location Map of Collection Points of All Generated Wastes from Plant Site and Accommodation Area

Figure – 12: Location Map of Disposal Sites for Waste from Plant and Accommodation Area

Figure – 13: Location Map of Site Waste Dumping Area (Scrap Yard)

Table - 24: Generated Non-Hazardous Waste

STC Non-hazardous Waste Generated from November 2024 to April 2025					
Month	Generated Waste (kg)	Reduction waste (kg)	Landfill Waste (kg)	Remark	
November 2024	16,880	4,246	12,634		
December 2024	16,920	4,246	12,674	Disposed to Temporary Non- hazardous Solid Waste Storage Area	
January 2025	20,620	4,246	16,374		
February 2025	14,240	4,246	9,994		
March 2025	16,540	4,246	12,294		
April 2025	12,220	4,246	16,466		

3.4.2 Generation of Hazardous Waste

Table - 25: Generated Hazardous Waste

STC Generated Hazardous Waste						
Sr.	Date	Type of Waste	Quantity	Amount (kg)	Treatment Facility	Remarks
1	9 January 2025	Clinical, Laboratory and Contaminated Oil rags	-	760 kg	Meikhtila Municipal Incinerator	Disposal

3.4.3 Waste Management Mitigation Measures

Table - 26: Waste Management Mitigation Measures

Affected Aspect	Mitigation Measures	Action Taken	Photos
Waste	A waste management plan (WMP) for the project has been developed that include the following as a minimum:	Approved waste management plan	Projekt 3 kan Kanada Anamalay (14.1 1967)
Manage ment	A waste inventory should be created to establish the types of wastes;	Established (dispose Non-hazardous waste to Temporary N-H Solid Waste Storage area whereas Hazardoous waste will be disposed to DOWA, accredited waste management company. Clinical and Laboratory waste are disposed to Meikhtila Incinerator, approved for disposal by Meikhtila City Development Committee)	<complex-block></complex-block>

Bi-Annual Environmental Monitoring Report

 Identify disposal routes (including transport options and disposal sites) for all wastes generated; 	Identified waste streams (See Figure-11 & 12 for waste collection point and disposal site)	10.117eazerbilaer Weider?
Segregate wastes and recycle wherever possible;	Segregated scrap materials for resale and reuse (See Figure-13 for Scrap Yard Area)	
 Hazardous wastes should be segregated and disposed separately from non- hazardous wastes using a license contractor; 	Hazardous waste treatment by DOWA and non-hazardous waste, municipal waste disposed at Temporary Non- hazardous solid waste storage area. Medical and laboratory waste dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee)	$ \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \\ \hline \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \hline \begin{array}{c} \\ \hline \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array}$
 Hazardous wastes shall be labelled and stored in sealed containers that are stored on bunded hardstand. Hazardous wastes that are unsuitable for disposal in the cement kiln (such as waste oil drums) shall be returned to the manufacturer or trucked to Mandalay for appropriate disposal at a hazardous waste facility; 	Hazardous waste is collected and deposed to dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee.	
Waste oil should be used for kiln start-up;	Resale by Warehouse Department (WHS)	

Bi-Annual Environmental Monitoring Report

 Organic waste for composting or use as animal feed in nearby villages; 	Organic waste (vegetables waste) are collected and composed to use as a fertilizer. Organic waste (food waste) are collected by locals for as animal feed.	
Waste suitable for use as fuel should be considered; and	Used waste oil resale to local merchant	
The existing landfill is not lined and should be only used for inert (non-reactive) and non-hazardous waste only.	Implemented (Constructed Old Temporary Non- hazardous solid storage area for disposing Non-hazardous waste and operated it from 2012 to June 2019. Replantation in old place after closure. After inspection of New Temporary Non- hazardous solid storage area from ECD and governmental organizations in 5 July 2019, operate that one until now.)	Faret inelling under space Graves by Topport, Sole Nankagerlank wakes Forstanding in the space Graves by Topport, Sole Nankagerlank wakes Characteristic Graves by Topport, Sole Nankagerlank wakes Topport Sole Nankagerlank wakes

3.4.4 Evaluation

Implementing principles of the waste hierarchy in the most responsible manner (reduce, reuse, recycle, reclaim, dispose) in the plant site by conducting in-house training for hazardous and non-hazardous waste management, tool box talk, delivering pamphlet, offering waste bin in each plant site department and accommodation area, undertaking simultaneous mass housekeeping campaigns occasionally, using waste manifest form, daily conducting housekeeping in the site and surrounding area to get awareness on waste reduction, segregation, collection and disposal practices that avoid impacts on the physical, biophysical and social environments.

4. Biodiversity Action Plan Implementation

STC is continuous implementing Biodiversity Action Plan (BAP) with regular Transect Survey, Invasive Survey, Wildlife Market Survey, maintaining the Ecosystem Restoration Plantations and 3 nurseries, and raising biodiversity conservation activities around the Limestone and Mudstone Quarry operation.

4.1 Transact Survey

A transact survey was carried out in the limestone quarry area of the cement plant as part of the environmental monitoring program, with a focus on assessing local biodiversity and habitat conditions. The survey was conducted along predefined transect lines across disturbed and undisturbed areas surrounding the quarry. One of the key observations during the survey was the presence of migratory bird species utilizing the area as a seasonal stopover or feeding ground, indicating that the habitat remains in relatively good ecological condition. Their presence suggests minimal impact from quarry operations and highlights the need for continued implementation of the Biodiversity Action Plan (BAP) to preserve and enhance habitat quality.

Figure – 15: Migratory Birds Records from Transact Survey

Black Hooded Oriole

Greenish warbler

Black-winged Cuckoo shrike

Blue Rock Thrush

Grey Headed Paraket

Red Vented Bulbul

Bi-Annual Environmental Monitoring Report

			,		
No.	Common Name	Scientific Name	Family	IUCN Status (version 2024-2)	Types of Occurrence
1	Black Hooded Oriole	Oriolus xanthornus	Oriolidae	Least Concern	Rest
2	Blue Rock Thrush	Monticola solitarius	Muscicapidae	Least Concern	Rest
3	Greenish warbler	Phylloscopus trochiloides	Phylloscopidae	Least Concern	Rest
4	Grey Headed Paraket	Psittacula finschii	Psittaculidae	Near Threatened	Rest
5	Lineated Barbet	Psilopogon lineatus	Megalaimidae	Least Concern	Rest
6	Red Vented Bulbul	Pycnonotus cafer	Pycnonotidae	Least Concern	Rest
7	Black-winged Cuckooshrike	Lalage melaschistos	Campephagidae	Least Concern	Feeding
8	Red Muntjac	Muntiacus muntjak	Cervidae	Least Concern	Feces

Table - 27: Wildlife Records from Transact Survey

4.2 Ecosystem Restoration Plantations

STC has successfully implemented an ecosystem restoration initiative by establishing plantations for land leased agreement with the government since 2016. The maintenance of these plantations is diligently carried out through routine operations, including weeding, patching, and fire protection across all areas.

Table-28 [.]	Ecosystem	Restoration	Plantation	l ist by years
	LOOSystem	restoration	riantation	

No.	Year	Acre	No. of trees	Remark
1	2016	33	17820	
2	2017	15	5950	
3	2018	50	60500	
4	2019	115	50100	
5	2020	150	81100	
6	2021	150	81100	
7	2023	65	35100	
	2024 (Total)	578	331670	

Table-29: Maintenance of Ecos	ystem Restoration Plantations (E	ERP)
-------------------------------	----------------------------------	------

			Nov 2024	Dec 2024	Jan 2025	Feb 2025	March 2025	Apr 2025
Location	Particular	Patched Area	-	3rd Weeding	Weeding for Fire Protection	Road Clearing for Fire Protection	Fire Protection Activities	Fire Protection Activities
Near Apache	ERP 33 Ac	7 Ac	-	7 Ac	7 Ac	7 Ac	-	-
Near Apache	ERP 65 Ac	33 Ac	-	33 Ac	33 Ac	33 Ac	-	-
South Dvi Nivoung	ERP 100 Ac	16 Ac	-	16 Ac	16 Ac	16 Ac	16 Ac	16 Ac
South Fyr Nyaung		9 Ac	-	9 Ac	9 Ac	9 Ac	9 Ac	9 Ac
Wundwin	ERP 25 Ac	25 Ac	-	25 Ac	25 Ac	25 Ac	25 Ac	25 Ac
Mahlaing	ERP 40 Ac	40 Ac	-	40 Ac	40 Ac	40 Ac	40 Ac	40 Ac

During the reporting period from November 2024 to April 2025, ecosystem restoration plantations (ERP) were maintained and protected through scheduled weeding and fire prevention activities across various locations. At the Apache site, a total of 40 acres underwent third weeding in December, followed by repeated fire protection activities from January to February. In South Pyi Nyaung, 100-acre ERP site received consistent maintenance, with fire protection measures conducted monthly from January through April. Similarly, the ERP site in Wundwin (25 acres) and Mahlaing (40

Bi-Annual Environmental Monitoring Report

acres) were consistently managed throughout the reporting period, with weeding and fire protection actions conducted from December onward. These activities contributed to the ongoing preservation and resilience of restored ecosystems in areas impacted by quarry operations.

Figure – 16: Maintenance activities at Ecosystem Restoration Plantations

STC took zero burning practice in all plantation to protect carbon emission from our activities. It may lead to develop slow growth of some species such as Kyun and Myanmar Kokko. The grow rate of Sein Pan is the best growth rate that average is about 7 ft in South Pyi Nyaung plantation. Mazili grow rate is the best in plantation 65 acre near cement plant. Padauk was damage due to domestic buffalo from near village. STC will mitigate to get better growth rate plantation in next year by changing of planting pattern, selection of species, preparation of soil before planting.

STC has operated fire protection roads for all patched area in ecosystem restoration plantations to protect forest fire in summer season. STC use local contractors to give job opportunity from our activities.

Bi-Annual Environmental Monitoring Report

4.3 Biodiversity Awareness Training

STC conducted in-house training sessions on the Biodiversity Policy and Action Plan for new employees, as well as biodiversity awareness programs for local communities, particularly children, in Ku Pyin and Pyi Nyaung Villages. These programs aimed to enhance understanding of local wildlife species found in and around the STC and STM project areas. As part of the awareness activities, a coloring contest was organized for children, with awards presented to outstanding participants. The children actively engaged in the program, contributing to its success and fostering greater appreciation for biodiversity conservation.

Figure – 17: Biodiversity Awareness Training Records

Biodiversity Polices & Action Plan Training to All STBM New Employees

Training Title	Biodiversity Polices & Action Plan (Annual Training)
Trainer	Naing Htay Linn (Environmental Executive)
Number of Training	3 Times
Date	12, 13 December 2024
Number of Attendance	81 persons
Status of Completed	Completed 76 persons among 81 persons (93 % Completed)
Trained Dept	ADM, BDD, , CPP, ELE, F&A, FME, HME, HRD, HSE, LGS, LQC, MNE, PCM, PME, PRD, SLE, WHS
Training Location	Main Office, Training Room

- To aware the STC's Biodiversity Action Plan and Biodiversity Policies

- To raise awareness continuously for the conservation of forest, biodiversity (flora and fauna) and surrounding environment areas:

- To encourage local people and staffs not to conduct illegal logging activities and poaching.

- To monitor signs of potential wildlife conflict, illegal logging and poaching at project area regularly.

Biodiversity Polices & Action Plan Training 70

Trained Person Remaining Person

Title	Awareness for King Cob & Coloration	ra (Ophlophagus hannah) Competition	Awareness for Shan State Langur (Trachypithecus phayrei spp. shanicus) & Coloration Competition		
Date	Conducted on 21 th Jan 2025	Conducted on 5 th February 2025	Conducted on 25th March 2025	Conducted on 28 th April 2025	
Audience	Grade – 1 Students (Male-16/Female-12)	ade – 1 Students (Male-16/Female-12) Grade – 1 Students (Male-14/ Female-14)		Grade – 1, 2, 3, 4 & 5 Students (Mail 11/Female-15)	
Location	At Ku Pyin Village – Basic Education Middle Branch School	At Pyi Nyaung Village – Information Center & Library	At Ku Pyin Village – Monastery	At Pyi Nyaung Village – Information Center & Library	
Recorde Event Pho Awarene Vinyl Boa	ed boos Sind State		The second secon	Tartaretter	

Awareness Raising Training At Pvi Nyaung Village & Ku Pvin Village

5. Corporate Social Responsibility

STC cement plant implements Corporate Social Responsibility (CSR) to communities and release newsletter in quarterly, see in Appendix - D.

Bi-Annual Environmental Monitoring Report

6. Occupational Health and Safety

Workers are at risk of occupational health and safety incidents. Such incidents may be linked to the physical environment in which they operate, the procedures they have to abide by or the on-site health and safety culture.

Shwe Taung has existing occupational health and safety policies and procedures in place at the mudstone quarry and these are applicable for the expansion project. These procedures include requirements in terms of operational safety (blasting, excavator, ladder, crane and forklift management, working at height, personal protective equipment use, lifting operation, emergency management, etc.).

Generally, there is one to two daytime blasting occurred at limestone quarry within two to three months. Blasting is thus infrequent and will be managed under the Standard Operating Procedure (SOP) for blasting and excavation to ensure safety of staff and community.

6.1 Fire Safety Measures

In compliance with the directives of the Myanmar Fire Services Department, STC has implemented a series of fire safety measures to mitigate fire hazards in the workplace. These measures include conducting regular fire drills and maintaining firefighting equipment.

The main objective of regular fire drills is to ensure all staff are familiar with fire safety protocols and the use of firefighting equipment. Training were conducted to familiarize staff with the operation of a fire truck in case of an emergency. Moreover, all employees were trained on the correct procedures to follow upon hearing the fire alarm. This includes how to safely evacuate to the nearest assembly area within a short timeframe. Staff were also trained to identify and use firefighting facilities such as fire hydrants, fire extinguishers, and other related equipment. Activities during the drill were meticulously documented, and photographs were taken to provide a visual record of the procedures and participation. Please see the updated "Emergency Preparedness Fire Drill Exercise Reports" in "Appendix – E"

6.2 Occupational Hazard Prevention and First Aid Training

Ensuring the safety and well-being of our employees is paramount. STC conducts comprehensive training programs focused on occupational hazard prevention and first aid. These programs are meticulously documented with detailed procedures and photographic evidence to uphold high standards of health and safety compliance.

OHS training at STC encompasses a broad spectrum of critical safety topics. Employees receive training on energy isolation to prevent accidental startups, and on confined space and rescue equipment to ensure safe operations in restricted areas. Office safety training covers best practices for maintaining a safe work environment, while working at height training emphasizes the use of proper safety measures and equipment. Training for riggers and signalmen ensures safe rigging practices and effective communication during lifting operations. Hot work training covers procedures and precautions for tasks involving open flames or heat, and safety inductions provide new employees with essential safety knowledge.

Additional training includes belt conveyor guarding and machine cover to enhance machinery safety, first aid for immediate response to injuries, and scaffolding safety for the proper erection and use of scaffolds. Programs such as "Take 2 Minutes" encourage employees to assess risks before starting tasks, and safety interaction and observation promote proactive safety discussions. Electrical safety training addresses procedures for working with electrical systems, while manual handling training teaches proper techniques to prevent injuries. Risk management training focuses on identifying, assessing, and mitigating workplace risks.

Internally, STC conduct annual employee safety inductions to refresh safety protocols, permit to work training to ensure understanding of the permit system for hazardous tasks, and safe work procedure training. Risk assessment training is provided to develop techniques for evaluating and mitigating risks. Lototo (Lock Out, Tag Out, Try Out) training ensures the safe de-energization of

equipment, and specific electrical training addresses managing electrical hazards. Regular office safety training and fire drills are also conducted to reinforce these practices.

A key component of STC's training is first aid. First aid training program equips employees with the skills necessary to provide immediate assistance in the event of an injury or health emergency. This includes basic first aid techniques, CPR, and the use of first aid equipment. Employees learn how to respond to a variety of medical situations, ensuring that they are prepared to act swiftly and effectively. This training is crucial in minimizing the impact of workplace injuries and can be life-saving in critical situations. Moreover, to safeguard occupational health, STC collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

Figure -18: OHS, First Aid Trainings Records and Medical check-ups from Ministry of Health

SHWE TAUNG Building Materials

> စာအမှတ်၊ ပကရ/ပက-လခေ/စိမ်(၁၂)/၂၀၂၅ (၁၁၉.) ရက်ရုံ၊ ၂၀၂၅ ခုနှစ်၊ ဖေဗော်ဝါရီလ (၂၄) ရက်

OHS Manager အပါရှိဘိလဝိဖြေဂောိရုံ Shive Taung Cement Co. Itd အခြောင်းအရာ။ အပါရိုဘိလဝိခမြေကေိရုံတွင် လုဝ်နန်းရှင်ပတ်ဝန်းကျင်ဗိစစ်ဖြင်း၊ လုပ်သားများ

2

ရုံးလက်ခံ မျှောစာတွဲ

အား ကျွန်မာရေးစစ်ဆေးပေးခြင်းနှင့် လုဝ်ငန်းခွင်ရွှေဦးသူနာမြင်သင်တန်း ငိုးချင်း၊ လုဝ်ငန်းများ ဆောင်ရွက်မည်ဖြစ်ကြောင်း အကြောင်ကြားဖြင်း ရည်ညွှန်းချက်၊ Shwe Taung Cement Co. Ltd ၏ (၈၀-၂-၇၂၅) ရက်ခွဲပါ စာဘမ္မတ်၊ (STBN/

OHS/ 001/ 2025)

အထက်အကြောင်းအရာပါကိစ္စနှင့်ဝေံလှည်၍ ရည်ညွှန်းပါစာအရ မန္တလေးကိုင်းအသကြီ။ သာစည်ဖြံ့နယ်ရှိ၊ ရွှေတောင်ကုမ္ပကီးပိမ်ကက်ပိုင် အပါရိတ်လင်မြောက်ရုံသို့ ပြည်သူ့ကျွန်မာရေး ဦးစီးဌာန၊ လုပ်ငန်းစွင်နှင့်ပတ်ဝန်းကွာင်ကုန်းခာရေးဌာနနိဗ္ဗ ဆရာဝန်များ၊ သူနဂြုံများ၊ ပတ်ဝန်း ကျင်စီစနေးစစ်ဆစ်များသည့် လုပ်ငန်းစွင်တွေနီးကျွစ်စန်ဖြင်း၊ လုပ်ငန်းများကို (၃-၃-၂၀၂၄) ရက် နှေစ်အောပေးကြင်းနှင့် လျပ်ငန်းစွင်ရေးဦးသူနေပြည်းတန်းကိုခြောင်းလုပ်ငန်းများကို (၃-၃-၂၀၂၄) ရက် နှေန (ဂ၃-၂၀၂၇)ရက်နေနအထိ လာရောက်ဆောင်ရွက်မည်ဖြစ်ပါကြောင်း၊ ညှိနှင်းအကြောင်ကြေား အဝိပဲသည်။

> (ରୋମସ୍ଟି ଇ∛ଙ୍ଗି

Bi-Annual Environmental Monitoring Report

7. Conclusion and Recommendation

STC cement plant demonstrates the implementation of Environment Monitoring Plan in which they are operating and has properly assessed the key potential environmental and social impacts associated with the cement plant operation. It is ensuring that the Myanmar environmental legislative compliance and IFC standards of good practice during the cement plant expansion project and operations in Thazi Township, Mandalay Region.

Mitigation measures are properly implemented as per stated in EMP, it is expected that the environmental and social impacts are managed by STC with robust environmental management system that is implemented by a well-resourced, integrated and competent HSE staffs as per compliance of STC Cement Plant EIA report.

The Environment Management Plan concludes that no major direct impacts are anticipated from this Project and all environmental impacts have been properly and progressively mitigated. These monitoring results will be properly communicated to stakeholders, especially local community, as per Stakeholders Engagement Plan. Moreover, biannual environmental monitoring reports are disclosed to community at Information Centers in Pyi Nyaung and Ku Pyin villages and has uploaded in Apache Cement Website https://www.apachecement.com/. The "Status of Cement Plant Biannual Environmental Monitoring Reports Submission to ECD" can be seen in the Appendix-A3. Monitoring photo records can be seen in the Appendix-F.

Bi-Annual Environmental Monitoring Report

8. Appendix

APPENDIX-A

Bi-Annual Environmental Monitoring Report

APPENDIX-A1

Submission Letter for Cement ECC Extension

ညွှန်ကြားရေးမှူး ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန မန္တလေးတိုင်းဒေသကြီး

စာအမှတ် ။ ။ STC- MD – 008 - 2025 ရက်စွဲ ။ ။၂၀၂၅ ခုနှစ်၊ ဇန်နဝါရီလ (၁၃) ရက် အကြောင်းအရာ ။ Shwe Taung Cement Co., Ltd မှ မန္တလေးတိုင်းဒေသကြီး၊ သာစည်မြို့နယ်၊ ကူပြင် ကျေးရွာအုပ်စုအတွင်း တစ်ရက်လျှင် ဘိလပ်မြေ တန် ၂၈၀၀ မှ တန် ၇၂၀၀ အထိ တိုးချဲ့ တည်ဆောက်ခြင်း နှင့် ထုတ်လုပ်ခြင်းစီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှု ဆန်းစစ်ခြင်းအစီရင်ခံစာ၏ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဆိုင်ရာ လိုက်နာဆောင်ရွက်မှု သက်သေခံလက်မှတ် (Environmental Compliance Certificate-ECC) အား သက်တမ်း တိုးခွင့်ပြုပါရန် တင်ပြခြင်း။ ရည်ညွှန်းချက် ။ (၁) ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ ညွှန်ကြားရေးမှူးချုပ်ရုံး၏ ၅-၁၂-၂၀၁၉

- (၁) ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ ညွှန်ကြားရေးမှူးချုပ်ရုံး၏ ၅-၁၂-၂၀၁၉ ရက်စွဲပါ စာအမှတ်၊ အီးအိုင်အေ-၁/၄-စ(၂၅၉၂/၂၀၁၉)
- (၂) ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ ညွှန်ကြားရေးမှူးချုပ်ရုံး၏ ၇-၉-၂၀၂၃ ရက်စွဲပါ စာအမှတ်၊ အီးအိုင်အေ-၁/၁/ECC(EIA)(၄၀၇၂/၂၀၂၃)
- (၃) Shwe Taung Cement Co., Ltd ၏၂၉-၂-၂၀၂၄ ရက်စွဲပါ စာအမှတ်၊ STC-MD-104-2024
- (၄) Shwe Taung Cement Co., Ltd ၏၂၈-၆-၂၀၂၄ ရက်စွဲပါ စာအမှတ်၊ STC-MD-507-2024
- (၅) Shwe Taung Cement Co., Ltd ၏ ၃၀-၁၁-၂၀၂၄ ရက်စွဲပါ စာအမှတ်၊ STC-MD-660-2024

၁။ အကြောင်းအရာပါကိစ္စနှင့်ပတ်သက်၍ Shwe Taung Cement Co., Ltd. ၏ မန္တလေးတိုင်းဒေသကြီး၊ သာစည် မြို့နယ်၊ ကူပြင်ကျေးရွာအုပ်စုအတွင်း တစ်ရက်လျှင် ဘိလပ်မြေ တန် ၂၈၀၀ မှ တန် ဂ၂၀၀ အထိ တိုးချဲ့ တည်ဆောက် ခြင်းနှင့်ထုတ်လုပ်ခြင်း စီမံကိန်း၏ ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းအစီရင်ခံစာအတွက် အတည်ပြု ပြန်ကြားချက် ကို ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ ညွှန်ကြားရေးမှူးချုပ်ရုံး၏ ရည်ညွှန်း (၁) ပါ စာဖြင့် ၅-၁၂-၂၀၁၉ ရက်နေ့တွင် ရရှိခဲ့ပြီး ရည်ညွှန်း (၂) ပါ စာဖြင့် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဆိုင်ရာလိုက်နာဆောင်ရွက်မှု သက်သေခံ လက်မှတ်ကို ၇-၉-၂၀၂၃ ရက်နေ့တွင် ရရှိခဲ့ပြီးဖြစ်ပါသည်။

၂။ ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက်အနေဖြင့် စီမံကိန်း၏ ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာ အတွက် (၆) လ လျှင် တစ်ကြိမ် တင်ပြရမည့် စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာများ ကိုလည်း ၂၀၂၀ ခုနှစ် ဇန်နဝါရီလမှ ၂၀၂၃ ခုနှစ် ဒီဇင်ဘာလအထိ (၈) စောင်အား ရည်ညွှန်း (၃) ပါ စာဖြင့်လည်းကောင်း၊ ၂၀၂၃ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၄ ခုနှစ် ဧပြီလအထိ (၁) စောင်အား ရည်ညွှန်း (၄) ပါ စာဖြင့် လည်းကောင်း၊ ၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ် အောက်တိုဘာလအထိ (၁) စောင်အား ရည်ညွှန်း (၅) ပါ စာဖြင့် လည်းကောင်း စုစုပေါင်း စောင့်ကြပ်ကြည့်ရှုမှု

သို့

CLIEDE အစီရင်ခံစာ (၁၀) စောင် ကို မိတ္ထီလာခရိုင်၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေး ဦးစီးဌာန၊ လက်ထောက်ညွှန်ကြားရေးမှူးရုံးသို့ မပျက်မကွက် အစီရင်ခံတင်ပြထားရှိပြီး ဖြစ်ပါသည်။

၂။ ယခုအခါ မိမိတို့ Shwe Taung Cement Co., Ltd အနေဖြင့် မန္တလေးတိုင်းဒေသကြီး၊ သာစည်မြို့နယ်၊ ကူပြင်ကျေးရွာအုပ်စုအတွင်း တစ်ရက်လျှင် ဘိလပ်မြေ တန် ၂၈၀၀ မှ တန် ၇၂၀၀ အထိ တိုးခဲု့တည်ဆောက်ခြင်းနှင့် ထုတ်လုပ်ခြင်းစီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းအစီရင်ခံစာ၏ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဆိုင်ရာ လိုက်နာဆောင်ရွက်မှု သက်သေခံလက်မှတ် (Environmental Compliance Certificate-ECC) မှာ ၁၄-၁၁-၂၀၂၄ ရက် နေ့တွင်သက်တမ်းကုန်ဆုံးသွားပါသဖြင့် အဆိုပါ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဆိုင်ရာလိုက်နာဆောင်ရွက်မှု သက်သေခံ လက်မှတ်အား သက်တမ်းတိုး ခွင့်ပြုနိုင်ပါရန် အောက်ဖော်ပြပါ လိုအပ်သောအချက်အလက်များနှင့်တကွ ပူးတွဲတင်ပြ အပ်ပါသည်။

စဥ်	အကြောင်းအရာ	လက်ရှိ အခြေအနေ
(က)	လက်ရှိ စီမံကိန်းအဆိုပြုသူအမည် ပြောင်းလဲမှု ရှိ/မရှိ	စီမံကိန်း အဆိုပြုသူအမည် ပြောင်းလဲမှု
		မရှိပါ။
(ລ)	အဆိုပြုစီမံကိန်းသည် လက်ရှိအချိန်တွင် တည်နေရာ	စီမံကိန်း တည်နေရာ ပြောင်းလဲမှု မရှိပါ။
	ပြောင်းလဲမှု ရှိ/မရှိ၊ စီမံကိန်းတိုးချဲ့ ဆောင်ရွက်ခြင်း	စီမံကိန်း တိုးချဲ့ ဆောင်ရွက်ခြင်း မရှိပါ။
	ရှိ/မရှိနှင့် ထုတ်လုပ်မှုလုပ်ငန်းစဉ်ပမာဏ ပြောင်းလဲ	ထုတ်လုပ်မှုလုပ်ငန်းစဥ် ပမာဏ ပြောင်း
	ခြင်း ရှိ/မရှိ	လဲခြင်း မရှိပါ။
(ი)	ခွင့်ပြုမိန့်/ လုပ်ငန်းလိုင်စင် ထုတ်ပေးထားသည့်	Line-1 နှင့် Line-2 တို့အတွက်
	ဌာနများ၏ သက်တမ်းရှိ ခွင့်ပြုမိန့်/ လုပ်ငန်းလိုင်စင်	စက်မှုလုပ်ငန်း မှတ်ပုံတင်လက်မှတ်များ
	အထောက်အထားများ	ကို ပူးတွဲ (၁) ဖြင့် ဖော်ပြထားပါသည်။
		(Line-1 အတွက် စက်မှုလုပ်ငန်း
		မှတ်ပုံတင် လက်မှတ် သက်တမ်းတိုးကို
		၁၉-၁၂-၂၀၂၄ ရက်နေ့တွင် မိထ္ထီလာခရိုင်
		စက်မှုကြီးကြပ်ရေးနှင့် စစ်ဆေးရေးဦးစီး
		ဌာနမှ သက်တမ်းတိုး ကွင်းဆင်းစစ်ဆေး
		လာရောက်ခဲ့ပြီးဖြစ်ပြီး သက်တမ်းတိုး
		လက်မှတ်ရရှိနိုင်ရေးအတွက် အဆင့်ဆင့်
		ဆောင်ရွက်လျက်ရှိကြောင်း တင်ပြအပ်
		ပါသည်။)
(ဃ)	အတည်ပြုသည့် အချိန်မှစ၍ ယနေ့အထိ ဌာနသို့	အတည်ပြုသည့် အချိန်မှစ၍ ယနေ့အထိ
	(၆) လလျှင် တစ်ကြိမ် စောင့်ကြပ်ကြည့်ရှုမှု	မိတ္ထီလာခရိုင်၊ ပတ်ဝန်းကျင်ထိန်းသိမ်း
	အစီရင်ခံစာ များ တင်ပြဆောင်ရွက်မှု အခြေအနေ	ရေး ဦးစီးဌာနသို့ (၆) လလျှင် တစ်ကြိမ်

		စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာ (၁၀)
		စောင် တင်ပြထားရှိပြီး ဖြစ်ပြီး အစီရင်ခံ
		စာများကို ရည်ညွှန်း(၃)၊ (၄) နှင့် (၅)
		ပါစာများဖြင့် တင်ပြထားပါသည်။
(c)	စီမံကိန်းအဆိုပြုသူ၏ (အပြာရောင် နောက်ခံဖြင့် 1.3"	ပူးတွဲ (၂) ဖြင့် တင်ပြအပ်ပါသည်။
	x 1.5" အရွယ်အစား) ဓာတ်ပုံ (၃) ပုံ	

ပူးတွဲ (၁) - Line-1 နှင့် Line-2 တို့အတွက် စက်မှုလုပ်ငန်း မှတ်ပုံတင်လက်မှတ်များ ပူးတွဲ (၂) - စီမံကိန်းအဆိုပြုသူ၏ ဓာတ်ပုံ (၃) ပုံ

လေးစားစွာဖြင့်

(ကျော်နိုင်စိုး) ဒုတိယအုပ်ချုပ်မှုဒါရိုက်တာ ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက်

- မိတ္တူ လက်ထောက်ညွှန်ကြားရေးမှူးရုံး၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ မိတ္ထီလာခရိုင်
 - ညွှန်ကြားရေးမှူးချုပ်ရုံး၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၊ နေပြည်တော်
 - ရုံးလက်ခံ

Bi-Annual Environmental Monitoring Report

APPENDIX-A2

Mitigation Measures for Air Quality Impact

Bi-Annual Environmental Monitoring Report

Figure: Water Suppression Map to mitigate dust emission in plant site

Table: Water Suppression Record from November to April 2025 to mitigate dust suppression in plant site.

Water Suppression Record 2024-2025												
		Vehicle No. Remark										
Month	5B -4174 (Capacity: 2200 gal)		6C (Ca 400	3C-1052 2R-5191 Capacity: (Capacity: 000 gal) 800 gal)		1P-4508 (Capacity: 4500 gal)		2R-5193 (Capacity: 800 gal)		7G-9512 (Capacity: 2800 gal)		
	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consu mption	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consump tion
Nov 2024	-	-	19	76000	-	-	110	495000	214	171200	-	-
Dec 2024	-	-	55	220000	54	43200	110	495000	291	232800	-	-
Jan 2025	82	180400	-	-	-	-	109	450500	224	179200	217	607600
Mar 2025	177	389,400	-	-	-	-	110	495,000	273	218,400	124	347,200
Apr 2025	39	85,800	60	240,000	-	-	110	495,000	193	154,400	144	403,200

Note: Source of water supply from Sedimentation Ponds

Table: Bag Filter Maintenance Record

No	Month	Location	Qty	Unit
1	May	Line-1, Coal Mill Bag Filter & Cage	1536	Nos
2	June	Cement Mill-2, Bag Filter & Cage	1792	Nos
3	October	Cement Mill-1, Bag Filter & Cage	256	Nos

Bi-Annual Environmental Monitoring Report

APPENDIX-A3

Status of Cement Biannual Environmental Monitoring Reports Submission to ECD

Bi-Annual Environmental Monitoring Report

ဝန်ကြီးရံး အတည်ပြုချက် ရရှိသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာ တင်ပြသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှုမှု အစီရင်ခံစာ တင်ပြသည့် အကြိမ်အရေအတွက်	စောင့်ကြပ်ကြည့်ရှုမှုအစီရင်ခံစာ တင်ပြသည့် အချိန်ကာလ အပိုင်းအခြား	မှတ်ချက်
		ပထမအကြိမ်	၂၀၂၀ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၀ ခုနှစ် ဇွန်လအထိ	
		ဒုတိယအကြိမ်	၂၀၂၀ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၀ ခုနှစ် ဒီဇင်ဘာလအထိ	
		တတိယအကြိမ်	၂၀၂၁ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၁ ခုနှစ် ဇွန်လအထိ	
		စတုတ္ထအကြိမ်	၂၀၂၁ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၁ ခုနှစ် ဒီဇင်ဘာလအထိ	
	JG.J.J.J.J.A	ပဉ္စမအကြိမ်	၂၀၂၂ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၂ ခုနှစ် ဇွန်လအထိ	
		ဆဌမအကြိမ်	၂၀၂၂ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၂ ခုနှစ် ဒီဇင်ဘာလအထိ	
၂၂.၁၁.၂၀၁၉		သတ္တမအကြိမ်	၂၀၂၃ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၃ ခုနှစ် ဇွန်လအထိ	
		အဌမအကြိမ်	၂၀၂၃ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၃ ခုနှစ် ဒီဇင်ဘာလအထိ	
	၂၈.၆.၂၀၂၄	နဝမအကြိမ်	၂၀၂၃ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၄ ခုနှစ် ဧပြီလအထိ	ဝန်ကြီးရုံးအတည်ပြုသည့် ရက်စွဲအရ ပြန်လည်ညှိနှိုင်း ပြင်ဆင်တင်ပြခဲ့ပါ သည်။
	၂၉.၁၁.၂၀၂၄	ဒဿမအကြိမ်	၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ် အောက်တိုဘာလအထိ	
	၂၀၂၅ ခုနှစ် မေလ	၁၁ ကြိမ်မြောက်	၂၀၂၄ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၅ ခုနှစ် ဧပြီလအထိ	
	ဆက်လက်တင်ပြရန်	၁၂ ကြိမ်မြောက်	၂၀၂၅ ခုနှစ် မေလမှ ၂၀၂၅ ခုနှစ် အောက်တိုဘာလအထိ	၂၀၂၅ ခုနှစ် နိုဝင်ဘာလအတွင်း တင်ပြရန်

Table: Status of Cement Biannual Environmental Monitoring Reports Submission to ECD

SHWE TAUNG Building Materials

Bi-Annual Environmental Monitoring Report

APPENDIX-B

Water Quality Results

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-1)

(Ku Pyin Stream Water Quality Results)

Lab & Quality Control Department

Water Quality Test Report

...

.

485.

32

Nature of waterStream WaterLocationKu Pyin VillageDate of sample collection22.11.2024Date of sample examination23.11.2024Date of completing26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.3	6.5~8.5
Colour(True)	5 PCU	15 PCU
Turbidity	0.48 NTU	5 NTU
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	1 mg/l	50mg/l
Nitrate	11.9 mg/l	50mg/l

.

÷.,

Tested by

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By 88 B Ye Naing Soe leam Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

1.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	1.18 NTU	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	0 mg/l	50mg/l	
Nitrate	8.1 mg/l	50mg/l	

Tested by

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By Ye` Naing Soe Team Leader

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	21.01.2025
Date of sample examination	22.01.2025
Date of completing	23.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.9	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	2.25 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	6 mg/l	50mg/l	
Nitrate	9.3 mg/l	50mg/l	

Tested by

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By Ye` Naing So Manager

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Ku Pyin Village
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	5	15 PCU	
Turbidity	2.11	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	
Total Suspended Solid(TSS)	6	50mg/l	
Nitrate	4	50mg/l	

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By

Ye' Naing Soe Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-2)

(Ye Shin Stream Water Results)

20

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing

Stream Water Near Pyin Nyaung Village 22.11.2024 23.11.2024 26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8	6.5 ~ 8.5
Colour(True)	0 PCU	15 PCU
Turbidity	3.41 NTU	5 NTU
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	12 mg/l	50mg/l
Nitrate	6.3 mg/l	50mg/l

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, 85 - Si Ye Naing Soe ٠. . Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

. 3 ⁵⁴

500

* 25 *****

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	
P ^H	7.1	6.5 ~ 8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	2.06 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	
Chloride(as Cl)		250mg/l	
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	3 mg/l	50mg/l	
Nitrate	4.2 mg/l	50mg/l	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

ye' Naing Spe **Team Leader** Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Sheom Water
Location	Near PN Village
Date of sample collection	21.01.2025
Date of sample examination	22.01.2025
Date of completing	23.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.8	6.5~8.5	
Colour(True)	0 PCU	15 PCU	
Turbidity	0.71 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	f = 4	250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	2 mg/l	50mg/l	
Nitrate	9.9 mg/l	50mg/l	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By e`Naing Manager

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	21.02.2025
Date of sample examination	22.02.2025
Date of completing	26.02.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.3	6.5 ~ 8.5
Colour(True)	5 PCU	15 PCU
Turbidity	0.6 NTU	5 NTU
Calcium Hardness		500 mg/l as CaCO3
Chloride(as Cl)	1	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	2 mg/l	50mg/l
Nitrate	3.3 mg/l	50mg/l

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing Soe Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	18.03.2025
Date of sample examination	19.03.2025
Date of completing	21.03.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.7	6.5 ~ 8.5
Colour(True)	20	15 PCU
Turbidity	0.85	5 NTU
Calcium Hardness	-	500 mg/l as CaCO3
Chloride(as Cl)	-	250mg/l
Sulphate(as SO4)	10	200mg/l
Total Suspended Solid(TSS)	1	50mg/l
Nitrate	11.8	50mg/l

Tested by;

Han Ko Win T-Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By

e

Naing Soe Manager (Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Stream Water
Location	Near Pyin Nyaung Village
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.2	6.5 ~ 8.5
Colour(True)	5	15 PCU
Turbidity	0.83	5 NTU
Calcium Hardness		500 mg/l as CaCO3
Chloride(as Cl)	-	250mg/l
Sulphate(as SO4)	10	200mg/l
Total Suspended Solid(TSS)	3	50mg/l
Nitrate	5.2	50mg/l

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, -

e^YNaing Soe Manager (

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-3)

(Supply Water (Lower Reservoir))

Lab & Quality Control Department

Water Quality Test Report

Nature of water Location **Date of sample collection** Date of sample examination Date of completing

Lower Reservoir/Non Potable Water Infront of Pump Station. 22.11.2024 23.11.2024 26.11.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.2	6.5 ~ 8.5
Colour(True)	20 PCU	15 PCU
Turbidity	2.8 NTU	5 NTU
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	11 mg/l	50mg/l
Nitrate	4.9 mg/l	50mg/l

Tested by,

.

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye^t Naing Soe 1.00 feam Leader⁽ Lab & QC Department Shwe Taung Cement Co., Ltd.

8**9**

55

5.**.** ι. E

95 30

89

3*6 34 12 ×.

S**a**tion of the second se

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	13.12.2024
Date of sample examination	14.12.2024
Date of completing	18.12.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.8	6.5 ~ 8.5	
Colour(True)	20 PCU	15 PCU	
Turbidity	4.31 NTU	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	· · · · ·	250mg/l	no stock chemical
Sulphate(as SO4)	20 mg/l	200mg/l	
Total Suspended Solid(TSS)	16 mg/l	50mg/l	
Nitrate	4.7 mg/l	50mg/l	

Tested by,

Han Ko Win Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By e` Naing Soe Team Leader

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	14.01.2025
Date of sample examination	15.01.2025
Date of completing	18.01.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.4	6.5 ~ 8.5	
Colour(True)	20 PCU	15 PCU	
Turbidity	5.56 NTU	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)		250mg/l	no stock chemical
Sulphate(as SO4)	20 mg/l	200mg/l	
Total Suspended Solid(TSS)	15 mg/l	50mg/l	
Nitrate	3.6 mg/l	50mg/l	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye' Naing Soe Manager (

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	21.02.2025
Date of sample examination	22.02.2025
Date of completing	26.02.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.7	6.5~8.5	
Colour(True)	35 PCU	15 PCU	
Turbidity	5.22 NTU	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as CI)		250mg/l	no stock chemical
Sulphate(as SO4)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	17 mg/l	50mg/j	
Nitrate	4.8 mg/l	50mg/l	

Tested by,

19

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, Ye Naing Soe Manager 2

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	18.03.2025
Date of sample examination	19.03.2025
Date of completing	21.03.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	8.6	6.5 ~ 8.5	
Colour(True)	55	15 PCU	
Turbidity	10.9	5 NTU	
Calcium Hardness		500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)	-	250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	
Total Suspended Solid(TSS)	43	50mg/l	
Nitrate	13.5	50mg/l	

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By, e` Naing Soe Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water	Lower Reservoir/Non Potable Water
Location	Infront of Pump Station.
Date of sample collection	17.04.2025
Date of sample examination	17.04.2025
Date of completing	19.04.2025

Description of Analysis	Analysis Results	WHO Drinking water Guideline	Remark
P ^H	7.6	6.5~8.5	
Colour(True)	30	15 PCU	
Turbidity	2.13	5 NTU	
Calcium Hardness	-	500 mg/l as CaCO3	no stock chemical
Chloride(as Cl)		250mg/l	no stock chemical
Sulphate(as SO4)	10	200mg/l	no stock chemica
Fotal Suspended Solid(TSS)	31	50mg/l	
Nitrate	6	50mg/l	1.1

Tested by

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,_

e' Naing Soe Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-4)

(Supply Water (Lower Reservoir))

Tested by External Laboratories

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202408095 Revision No. : 1 Report Date : 22 August, 2024

Application No. : 0235-C001

Test Report

Client Name : Shwe Taung Cement Co.,Ltd

: No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Address

: Shwe Taung Cement Water Quality Test

Sample Description

Sample Name : Supply Water

Sample No. : W-2408079

Waste Profile No. : -

Sampling Date :	7 August, 2024
Sampling By :	Withdraw GEM
Sample Received Date :	7 August, 2024
Analytical Date :	7-22/08/2024

No.	Parameter	Method	Unit	Result	LOQ
1	Temperature	Instrument Analysis Method	°c	26.8	0.0
2	рн	APHA 4500 H+ B (Electrometric Method)	_	8.31	0.00
3	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	12	<u> </u>
4	BOD (5)	HACH Method 10099 (Respirometric Method)	mg/l	10.35	0.00
5	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	30.7	0.7
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
8	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	<0.02	0.02
9	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
10	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
13	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
14	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
15	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
16	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
17	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
18	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
19	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.274	0.002
20	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.002
21	Total Cyanide	Distillation Process: APIA 4500-CN- C. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine - Pyrazalone Method)	mg/l	<0.002	0.002
22	Hexavalent Chromium (Cr6+)	ISO 11083:1994 (Determination of chromium(VI) Spectrometric method using 155-giphenylcarbazide)	mg/l	<0.05	0.05

THIS ANALYSIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT WRITTEN APPROVAL OF THE LABORATORY OF

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD.

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202408095 Revision No. : 1

Report Date : 22 August, 2024

Application No. : 0235-C001

Test Report

Client Name	:	Shwe Taung	Cement Co.,Ltd
-------------	---	------------	----------------

; No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Address

: Shwe Taung Cement Water Quality Test

Sample Description

- Sample Name : Supply Water Sample No. : W-2408079
- Waste Profile No. : -

Sampling Date :	7 August, 2024
Sampling By :	Withdraw GEM
Sample Received Date ;	7 August, 2024
Analytical Date :	7-22/08/2024

No.	Parameter	Method	Unit	Result	LOQ
23	Fluoride	USEPA SPANDS 2 Method	mg/l	0.227	0.014
24	Total Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.1	0.1
25	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.019	0.005
26	Phenols	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	0.006	0.002
27	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	mg/l	54000.0	1.8

Remark : LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By :

Cherry Myint Thein Assistant Manager

*** End Of Document ***

Approved By :

Ni Ni Aye Lwin Aug 22, 2024

Manager

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012 Issue No - 1.0/Page 1 of 2

B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

W0824 167

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement	
Nature of Water	ဆည်ရေ	
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။	
Date and Time of collection	6.8.2024 (10:30 AM)	
Date and Time of arrival at Laboratory	7.8.2024	
Date and Time of commencing examination	8.8.2024	
Date and Time of completing	9.8.2024	

Results of Water Analysis

WHO Drinking Water Guideline

(Geneva - 1993)

pH			6.5 - 8.5
Colour (True)		TCU	15 TCU
Turbidity		NTU	5 NTU
Conductivity	-	micro S/cm	
Total Hardness		mg/l as CaCO ₃	500 mg/l as CaCO ₃
Calcium Hardness		mg/l as CaCO ₃	
Magnesium Hardness		mg/l as CaCO ₃	
Total Alkalinity		mg/l as CaCO ₃	
Phenolphthalein Alkalinity		mg/l as CaCO ₃	
Carbonate (CaCO ₃)		mg/l as CaCO ₃	
Bicarbonate (HCO ₃)		mg/l as CaCO ₃	
Iron	0.88	mg/l	0.3 mg/l
Chloride (as CL)		mg/l	250 mg/l
Sodium Chloride (as NaCL)		mg/l	
Sulphate (as SO ₄)		mg/l	500 mg/l
Total Solids		mg/l	1500 mg/l
Total Suspended Solids		mg/l	
Total Dissolved Solids		mg/l	1000 mg/l
Manganese		mg/l	0.05 mg/l
Phosphate		mg/l	
Phenolphthalein Acidity		mg/l	
Methyl Orange Acidity		mg/l	
Salinity		ppt	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by Signature: Name:

5 (a division of WEG Co., Ltd.)

Approved by Signature: Name:

Thinzar Theint Theint Assistant Technical Officer ISO Tech Laboratory

No.18. Lanthit Road, Nanthargone Quarter, Insein Township, Yangon, Myanmar. Ph: 01-640955, 09-880100172, 09-880100173, 01-644506, E-mail: isotechlaboratory@gmail.com, Website: weg-myanmar.com

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012 Issue No - 1.0/Page 2 of 2

Laboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001, Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

W0824 167

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement	
Nature of Water	ဆည်ရေ	-
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။	-
Date and Time of collection	6.8.2024 (10:30 AM)	
Date and Time of arrival at Laboratory	7.8.2024	
Date and Time of commencing examination	8.8.2024	
Date and Time of completing	9.8.2024	

Results of Water Analysis

WHO Drinking Water Guideline (Geneva - 1993)

Temperature (°C)		°C	
Fluoride (F)	0.4	mg/l	1.5 mg/l
Lead (as Pb)		mg/l	0.01 mg/l
Arsenic (As)	0.005	mg/l	0.01 mg/l
Nitrate (N.NO ₃)		mg/l	50 mg/l
Chlorine (Residual)	Nil	mg/l	
Ammonia Nitrogen (NH ₃)	0.15	mg/l	
Ammonium Nitrogen (NH ₄)		mg/l	
Dissolved Oxygen (DO)		mg/l	
Chemical Oxygen Demand (COD)		mg/l	
Biochemical Oxygen Demand (BOD)		ma/l	
(5 days at 20 °C)			
Cyanide (CN)	0.011	mg/l	0.07 mg/l
Zinc (Zn)		mg/l	3 mg/l
Copper (Cu)	Nil	mg/l	2 mg/l
Silica (SiO ₂)		mg/l	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

ISTTV) Sr.Chemist

Approved by Signature:

Name:

Thinzar Theint Theint

B.E (Civil) Assistant Technical Officer ISO Tech Laboratory

(a division of WEG Co., Ltd.)

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-5)

(Sedimentation Pond 5 Water Results)

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 27.11.2024 28.11.2024 29.11.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
рH	8.2	6-9
Total Suspended Solid(TSS)	35 mg/L	Max 50mg/L
Total Phosphorous	0.2 mg/L	2 mg/L
Total Nitrogen	2.03 mg/L	10mg/L
Total Nitrate	9 mg/L	44.29mg/L

1

1212

>

Approved By,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

.

Ye' Naing Sole Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	
Location	
Date of sample collection	
Date of sample examination	
Date of completing	

Surface Water Beside 103 & 501 Area 17.12.2024 18.12.2024 20.12.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.5	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	15 mg/L	Max 50mg/L	
Total Nitrogen	1.94 mg/L	10mg/L	
Total Nitrate	8.6 mg/L	44.29mg/L	
Total Phosphorous	0.3 mg/L	2mg/L	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing See

Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water
Location
Date of sample collection
Date of sample examination
Date of completing

Surface Water Beside 103 & 501 Area 14.01.2025 15.01.2025 19.01.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	7.4	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	1	C-30mg/L	no stock chemical
Total Suspended Solid(TSS)	46 mg/L	Max 50mg/L	
Total Nitrogen	0.65 mg/L	10mg/L	
Total Nitrate	2.9 mg/L	44.29mg/L	
Total Phosphorous	0.2 mg/L	,2mg/L	

Tested by,

M

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surf
Location	Besi
Date of sample collection	16.0
Date of sample examination	16.0
Date of completing	20.0

Surface Water Beside 103 & 501 Area 16.02.2025 16.02.2025 20.02.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	7	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	23 mg/L	Max 50mg/L	
Total Nitrogen	0.86 mg/L	10mg/L	
Total Nitrate	3.8 mg/L	44.29mg/L	
Total Phosphorous	-	2mg/L	no stock chemical

Tested by, For Star

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

e' Naing Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 15.03.2025 15.03.2025 20.03.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	7.2	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	25 mg/L	Max 50mg/L	
Total Nitrogen	2.09 mg/L	10mg/L	
Total Nitrate	9.3 mg/L	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by,

N.O

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

'e' Naing Soe Manager Lab & QC Department

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water Location Date of sample collection Date of sample examination Date of completing Surface Water Beside 103 & 501 Area 16.04.2025 16.04.2025 18.04.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.5	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	36	Max 50mg/L	
Total Nitrogen	1.2	10mg/L	
Total Nitrate	5.3	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

' Naing Soe Manager (Lab & QC Department

Lab & QC Department Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-6)

(Sedimentation Pond 7 Effluent Water Results)

Lab & Quality Control Department

Waste Water Test Report

Nature of waterSurface Water(Effluent Water)LocationBetween 401 & 405Date of sample collection27.11.2024Date of sample examination28.11.2024Date of completing29.11.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
рН	8.5	6-9
Total Suspended Solid(TSS)	5 mg/L	Max 50mg/L
Total Phosphorous	0.4 mg/L	2 mg/L
Total Nitrogen	2.46 mg/L	10mg/L
Total Nitrate	10.9 mg/L	44.29mg/L

÷.,

Approved By,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

.

Tested by,

Ye' Naing Sofe Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

1

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water(Effluent Water)
Location	Between 401 & 405
Date of sample collection	17.12.2024
Date of sample examination	18.12.2024
Date of completing	20.12.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	8.2	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	2 mg/L	Max 50mg/L	
Total Nitrogen	2.69 mg/L	10mg/L	
Total Nitrate	11.9 mg/L	44.29mg/L	
Total Phosphorous	0.2 mg/L	2mg/L	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Sole

Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water
Location	Between 401 & 405
Date of sample collection	14.01.2025
Date of sample examination	15.01.2025
Date of completing	19.01.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8.1	6-9	
Chemical Oxygen Demand(COD)	3 -	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	10 mg/L	Max 50mg/L	1
Total Nitrogen	0 mg/L	10mg/L	
Total Nitrate	0 mg/L	44.29mg/L	
Total Phosphorous	0.1 mg/L	2mg/L	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Spe Manager

Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water(Effluent Water)
Location	Between 401 & 405
Date of sample collection	16.02.2025
Date of sample examination	16.02.2025
Date of completing	20.02.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	8.8	6-9	
Chemical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	8 mg/L	Max 50mg/L	
Total Nitrogen	3.14 mg/L	10mg/L	
Total Nitrate	13.9 mg/L	44.29mg/L	
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

for

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

e' Naing Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water(Effluent Water)
Location	Between 401 & 405
Date of sample collection	15.03.2025
Date of sample examination	15.03.2025
Date of completing	20.03.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pН	8.0	6-9	
Chemical Oxygen Demand(COD)	19 (B)	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	10 mg/L	Max 50mg/L	en a station i se
Total Nitrogen	2.3 mg/L	10mg/L	
Total Nitrate	10.2 mg/L	44.29mg/L	
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

Cro

Thet Naing Win Associate Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe

Manager U Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Surface Water(Effluent Water)		
Location	Between 401 & 405		
Date of sample collection	16.04.2025		
Date of sample examination	16.04.2025		
Date of completing	18.04.2025		

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.9	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	10	Max 50mg/L	
Total Nitrogen	1.7	10mg/L	
Total Nitrate	7.5	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

e' Naing Soe Manager (Lab & QC Department

Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-7)

(Biotank Effluent Water Results)

.

Lab & Quality Control Department

Waste Water Test Report

Nature of waterSuLocation55Date of sample collection27Date of sample examination28Date of completing29

Surface Water(Effluent Water) 55 Acre (Bio Tank) 27.11.2024 28.11.2024 29.11.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
рН	8.8	6-9
Total Suspended Solid(TSS)	63 mg/L	Max 50mg/L
Total Nitrogen	2.37 mg/L	10mg/L
Total Nitrate	10.5 mg/L	44.29mg/L
Total Phosphorous	1.2 mg/L	2mg/L

.

65

22

>

Tested by,

Approved By,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Ve' Naing Soe Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Effluent Water
Location	55 Acre (Bio Tank)
Date of sample collection	17.12.2024
Date of sample examination	18.12.2024
Date of completing	20.12.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.2	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	73 mg/L	Max 50mg/L	
Total Nitrogen	10.16 mg/L	10mg/L	
Total Nitrate	45 mg/L	44.29mg/L	
Total Phosphorous	7.4 mg/L	2mg/L	

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing So

Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Waste Water
Location	55 Acre (Bio Tank)
Date of sample collection	14.01.2025
Date of sample examination	15.01.2025
Date of completing	19.01.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	8.1	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	143 mg/L	Max 50mg/L	
Total Nitrogen	2.71 mg/L	10mg/L	
Total Nitrate	12 mg/L	44.29mg/L	
Total Phosphorous	3.4 mg/L	2mg/L	

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing/Soe

Manager Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Waste Water
Location	55 Acre (Bio Tank)
Date of sample collection	22.02.2025
Date of sample examination	23.02.2025
Date of completing	25.02.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	7.4	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	276 mg/L	Max 50mg/L	
Total Nitrogen	3.88 mg/L	10mg/L	
Total Nitrate	17.2 mg/L	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by,

Han Ko Win Team Leader Lab & QC Department Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe Manager (

Lab & QC Department Shwe Taung Cement Co., Ltd.

1.1

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Waste Water
Location	55 Acre (Bio Tar
Date of sample collection	15.03.2025
Date of sample examination	16.03.2025
Date of completing	20.03.2025

nk)

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	7.4	6-9	
Chemical Oxygen Demand(COD)	-	0-125mg/L	no stock chemical
Biologycal Oxygen Demand(BOD)		0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	141 mg/L	Max 50mg/L	
Total Nitrogen	2.66 mg/L	10mg/L	
Total Nitrate	11.8 mg/L	44.29mg/L	
Total Phosphorous	-	2mg/L	no stock chemical

Tested by,

Ch.D

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe Manager (Lab & QC Department Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water	Waste Water
Location	55 Acre (Bio Tank)
Date of sample collection	26.04.2025
Date of sample examination	27.04.2025
Date of completing	28.04.2025

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
	7.2	6-9	
Chomical Oxygen Demand(COD)		0-125mg/L	no stock chemical
Riologycal Oxygen Demand(BOD)	-	0-30mg/L	no stock chemical
Total Suspended Solid(TSS)	142	Max 50mg/L	
Total Nitrogen	8.85	10mg/L	
Total Nitrate	39.2	44.29mg/L	
Total Phosphorous		2mg/L	no stock chemical

Tested by,

Thet Naing Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe

Lab & QC Department Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-8)

(Biotank Sludge Results from External Laboratory)

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar, Phone No Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202305002 Revision No. : 1 Report Date : 4 May, 2023 Application No. : 0235-C002

Analysis Report

Client Name	1	Shwe Taung Cement Co.,Ltd.		
Address	5	Shwe Taung Cement Plant, Pyi Nyaung		
Project Name	342433	Shwe Taung Cement Samples		
Sample Description				
Sample Name	5	Bio-tank Sludge	Sampling Date :	24 April, 2022
Sample No.	£	S-2304001	Sampling By	Customer
Waste Profile No) (-	Sample Received Date :	24 April, 2022
			Analytical Date	24/04-04/05/2023

No.	Parameter	Method For Liquid Sample Preparation	Method of Measurement	Unit	Result	LOQ
1	Arsenic			mg/kg	≤0.34	0.34
2	Selenium			mg/kg	≤0.34	0.34
3	Zinc			mg/kg	47.736	0.068
4	Nickel	EDA Mothod 2050 P (Asid		mg/kg	≤0.068	0.068
5	Соррег	Digestion of Sediments,	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/kg	4.352	0.068
6	Cadmium	Sludges, and Solis)		mg/kg	≤0.068	0.068
7	Mercury			mg/kg	≤0.068	0.068
8	Lead			mg/kg	≤0.068	0.068
9	Chromium			mg/kg	≤0.068	0.068
10	Total Coliform	APHA 9221B (Standard Total C	oliform Fermentation Technique)	MPN Index/100ml	4900.0	1.8

Remark : LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

EPA- The United States Environmental Protection Agency

Analysed By :

Cherry Myint Thein Assistant Manager

Approved By :

Ni Ni Aye Lwin Manager

REPORT RESULT IS ONLY OF THE SAMPLE SUBMITTED FOR ANALYSIS.

THIS ANALYSIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT WRITTEN APPROVAL OF THE LABORATORY OF GOLDEN DOWA ECO-SYSTEM MYANMAR CO.,LTD.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX- C

Ambient Air Quality Results

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-1)

Ambient Air Quality Results of Plant Site

Header

Start Dat	06-11 te 2:05:0	I-2024 00 PM										1						
End Dat	e 07-11 2:04:0	I-2024 00 PM																
Ave	PMA ug/m3 5-27569	2.08472	CO2 ppm 0	CO ppm -103534	NO2 ppb 63.1312	O3 ppb 39.7736	SO2 ppb	PrpM mm	RH %	TmpC Deg. C 20.45	WDir Deg. 245.747	WSpd mph .079166	Pwr V	0	0	0	0	
Max Min	52 2	18 1	0	.35 0	200 2	94 5	34 0	.13 0	100 87	22 20	359 0	2.4 0	10.6 9.7	0 0	0	0	0	
EPAS 919217	5.27569 52 2	2.08472 18 1	0 0 0	.103534 .35 0	63.1312 200 2	39.7736 94 5	.951388 34 0	.006687 .13 0	99.75 100 87	20.45 22 20	245.747 359 0	.079166 2.4 0	10.2722 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Tue, Jun 11, 2024	9.70756 52 2	3.43361 18 1	0 0 0	.126268 .35 .02	65.2453 200 2	46.1260 94 5	2.30252 34 0	.008184 .13 0	100 100 100	20.2857 22 20	269.615 359 0	.128907 2.4 0	10.3783 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	I
Ave Period 24 11-06-2024 11:59	9.70756 52 2	3.43361 18 1	0 0 0	.126268 .35 .02	65.2453 200 2	46.1260 94 5	2.30252 34 0	.008184 .13 0	100 100 100	20.2857 22 20	269.615 359 0	.128907 2.4 0	10.3783 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Thu, Jul 11, 2024	2.15502 8 2	1.13491 5 1	0 0 0	.087526 .19 0	61.6426 129 2	35.3005 54 16	0 0 0	.005633 .13 0	99.5739 100 87	20.5656 22 20	228.942 359 0	.044142 2.4 0	10.1975 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 11-07-2024 02:04	2.15502 8 2	1.13491 5 1	0 0 0	.087526 .19 0	61.6426 129 2	35.3005 54 16	0 0 0	.005633 .13 0	99.5739 100 87	20.5656 22 20	228.942 359 0	.044142 2.4 0	10.1975 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	

Header

Start Dat	12-12 te 3:05:(2-2024 00 PM										•						
End Dat	te 13-12 3:04:0	2-2024 00 PM																
Ave	PMA ug/m3 63 2798	4 77569	CO2 ppm 7 78541	CO ppm 069798	NO2 ppb 31 1333	O3 ppb 14 5868	SO2 ppb 3 04513	PrpM mm	RH %	TmpC Deg. C 19 8680	WDir Deg. 193 153	WSpd mph 268402	Pwr V	0	0	0	0	
Мах	265	46	47	.47	64	28	46	0	100	30	360	4.7	10.7	0	0	0	0	
Min	2	1	0	0	2	1	0	0	39	14	3	0	9.4	0	0	0	0	
EPAS 919217	63.2798 265 2	4.77569 46 1	7.78541 47 0	.069798 .47 0	31.1333 64 2	14.5868 28 1	3.04513 46 0	0 0 0	81.9520 100 39	19.8680 30 14	193.153 360 3	.268402 4.7 0	10.2555 10.7 9.4	0 0 0	0 0 0	0 0 0	0 0 0	
Daily	87.1457	9.46915	3.54018	.070130	28.0803	15.5682	5.59626	0	86.3906	19.8242	165.631	.144672	10.4411	0	0	0	0	
Thu, Dec 12, 2024	265 13	46 1	35 0	.47 0	49 2	28 1	46 0	0 0	100 39	29 15	195 111	3.3 0	10.7 9.9	0 0	0 0	0 0	0 0	
Ave Period 24	87.1457	9.46915	3.54018	.070130	28.0803	15.5682	5.59626	0	86.3906	19.8242	165.631	.144672	10.4411	0	0	0	0	Ĺ
12-12-2024 11:59	265 13	46 1	35 0	.47 0	49 2	28 1	46 0	0 0	100 39	29 15	195 111	3.3 0	10.7 9.9	0 0	0 0	0 0	0 0	
Daily	49.1712	2.00110	10.2950	.069602	32.9381	14.0066	1.53701	0	79.3281	19.8939	209.423	.341546	10.1458	0	0	0	0	Ĺ
Fri, Dec 13, 2024	202 2	11 1	47 0	.27 0	64 2	28 1	17 0	0 0	100 39	30 14	360 3	4.7 0	10.3 9.4	0 0	0 0	0 0	0 0	l
Ave Period 24	49.1712	2.00110	10.2950	.069602	32.9381	14.0066	1.53701	0	79.3281	19.8939	209.423	.341546	10.1458	0	0	0	0	ĺ
13-12-2024 03:04	202	11	47	.27	64	28	17	0	100	30	360	4.7	10.3	0	0	0	0	
	2	1	0	0	2	1	0	0	30	14	3	0	94					4

Header

Start Dat	09-01 te 4:50:0	-2025 00 PM					_		_			•						
End Dat	te 10-01 4:49:0	-2025 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	49.3409	5.31944	6.29166	.087465	31.0868	16.5208	1.75208	0	77.2687	18.4798	73.3840	.016111	10.0240	0	0	0	0	
Min	147	40 1	40	.52	2	31 1	0	0	32	29 12	358 0	1.4	9.3	0	0	0	0	
FDAG	-			• • • • • • •	-										,		, i i	
EPAS 919217	49.3409 147	5.31944 46	6.29166 <u>40</u>	.087465	31.0868 72	16.5208 21	1.75208 51	0	77.2687	18 <u>.</u> 4798	73.3840	.016111	10.0240	0	0	0	0	
515217	2	40 1	0	.52	2	31 1	0	0	32	29 12	0	0	9.3	0	0	0	0	
	_			ů	-		Ŭ	Ű	02		Ŭ	Ű	010	ÿ	Ŭ		Ŭ	_
Daily	71.3395	10.8581	.013953	.087883	33.8046	21.6720	5.16046	0	89.5697	17.0209	8.84186	0	10.1693	0	0	0	0	
Mon, Sep 1, 2025	147	46	0	.35	52	31	51	0	100	26	16	0	10.5	0	0	0	0	
	34	· · · ·	Ŭ	0	2	· · ·	U	U	42	14	0	U	9.6	0	0	0	0	L
Ave Period 24	71.3395	10.8581	.013953	.087883	33.8046	21.6720	5.16046	0	89.5697	17.0209	8.84186	0	10.1693	0	0	0	0	
01-09-2025 11.59	147	46	3	.35	52	31	51	0	100	26	16	0	10.5	0	0	0	0	
	34	1	0	0	2	1	0	0	42	14	0	0	9.6	0	0	0	0	L
Daily	39.9752	2.96138	8.96435 40	.087287	29.9297	14.3277	.300990	0	72.0316	19.1009	100.862	.022970	9.96227	0	0	0	0	
Wed, Oct 1, 2025	135	10	0	.52	2	30 1	9	0	32	29 12	300 Q	1.4	10.2	0	0	0	0	
Aux Davied 04	-			, i i i i i i i i i i i i i i i i i i i	-				52				0.0	0	0			L
Ave Period 24 01-10-2025 04:49	39.9752	2.96138	8.96435 40	.087287	29.9297	14.3277	.300990	0	72.0316	19.1009	358	.022970	9.96227	0	0	0	0	
	133	10	0	.52	12	30	9	0	100	29 12	9 9	1.4	0.2	0	0	0	0	

Header

Start Dat	21-02 • 4:40:0	2-2025 00 PM			_							1						
End Dat	e 22-02 4:39:0	2-2025 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	117.343	6.20694	134.181	.243673	43.4416	17.1798	5.49305	0	63.7631	21.1375	294.590	.068680	10.0642	0	0	0	0	
Max	285	41	222	.62	94	37	43	0	100	33	360	3.1	10.5	0	0	0	0	
Min	2	1	73	0	2	1	0	0	18	13	0	0	9.6	0	0	0	0	-
EPAS 919217	117.343 285 2	6.20694 41 1	134.181 222 73	.243673 .62 0	43.4416 94 2	17.1798 37 1	5.49305 43 0	0 0 0	63.7631 100 18	21.1375 33 13	294.590 360 0	.068680 3.1 0	10.0642 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Fri, Feb 21, 2025	136.663 235 51	12.5045 41 1	123.086 154 73	.314568 .58 .1	39.5568 83 2	16.9022 32 1	13.7590 43 0	0 0 0	65.6045 90 22	20.3454 31 15	331.640 345 175	0 0 0	10.2565 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 21-02-2025 11:59	136.663 235 51	12.5045 41 1	123.086 154 73	.314568 .58 .1	39.5568 83 2	16.9022 32 1	13.7590 43 0	0 0 0	65.6045 90 22	20.3454 31 15	331.640 345 175	0 0 0	10.2565 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Sat, Feb 22, 2025	108.842 285 2	3.436 19 1	139.064 222 81	.21248 .62 0	45.151 94 2	17.302 37 1	1.856 30 0	0 0 0	62.953 100 18	21.486 33 13	278.289 360 0	.0989 3.1 0	9.9796 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 22-02-2025 04:39	108.842 285 2	3.436 19 1	139.064 222 81	.21248 .62	45.151 94 2	17.302 37	1.856 30	0 0	62.953 100 18	21.486 33 13	278.289 360 0	.0989 3.1	9.9796 10.2	0 0	0 0 0	0 0	0 0	

Header

Start Dat	06-03 te 4:30:0	3-2025 00 PM										1						
End Dat	te 07-03 4:29:0	3-2025 00 PM																
_	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V	-		-	-	
Ave	122.597 368	6.71041 14	141./23 508	.347034 77	45.1902 107	17.9097 36	15./868 61	0	52.6604 100	22 <u>.</u> 1701	262.009	.203402	10.0780	0	0	0	0	
Min	2	1	84	0	2	1	0	0	5	13	2	0	9.3	0	0	0	0	
EPAS 919217	122.597 368 2	6.71041 44 1	141.723 508 84	.347034 .77 0	45.1902 107 2	17.9097 36 1	15.7868 61 0	0 0 0	52.6604 100 5	22.1701 33 13	262.009 359 2	.203402 3.1 0	10.0780 10.6 9.3	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Tue, Jun 3, 2025	165.788 368 47	14.3955 44 1	131.271 159 88	.431155 .77 .13	34.7644 82 2	14.1377 35 1	21.2422 57 0	0 0 0	48.6466 76 12	22.3066 33 16	229.091 350 2	.028666 .9 0	10.3042 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24	165.788	14.3955	131.271	.431155	34.7644	14.1377	21.2422	0	48.6466	22.3066	229.091	.028666	10.3042	0	0	0	0	I
03-06-2025 11:59	368	44	159	.77	82	35	57	0	76	33	350	.9	10.6	0	0	0	0	
	47	1	88	.13	2	1	0	0	12	16	2	0	9.7	0	0	0	0	
Daily	102.965	3.21717	146.474	.308797	49.9292	19.6242	13.3070	0	54.4848	22.1080	276.971	.282828	9.97525	0	0	0	0	
Thu, Jul 3, 2025	235 2	19 1	84	.74 0	107 2	36 1	61 0	0	100 5	33 13	359 4	3.1 0	10.2 9.3	0 0	0 0	0 0	0 0	
Ave Period 24	102.965	3.21717	146.474	.308797	49.9292	19.6242	13.3070	0	54.4848	22.1080	276.971	.282828	9.97525	0	0	0	0	
03-07-2025 04:29	235	19	508	.74	107	36	61	0	100	33	359	3.1	10.2	0	0	0	0	
	2	1	84	0	2	1	0	0	5	13	4	0	9.3	0	0	0	0	

Header

Start Dat	04-04 4:56:0	I-2025 00 AM										1						
End Dat	te 05-04 4:55:0	I-2025 00 AM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	92.3930	9.03680	46.5541	.353187	45.3631	19.4375	23.9631	0	41.6222	27.2298	163.543	1.42409	10.2463	0	0	0	0	
Мах	252	55	134	.87	112	36	67	0	74	36	360	13	10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	12	19	9	0	9.9	0	0	0	0	_
EPAS	92.3930	9.03680	46.5541	.353187	45.3631	19.4375	23.9631	0	41.6222	27.2298	163.543	1.42409	10.2463	0	0	0	0	
919217	252	55	134	.87	112	36	67	0	74	36	360	13	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	12	19	9	0	9.9	0	0	0	0	L
Daily	110,135	9.00874	57.0104	.403828	56.4659	22.3986	24,1555	0	47.8470	25.4475	145.074	.318444	10 2621				0	
Eri Apr 4 2025	252	50	125	.87	112	36	55	0	74	36	359	6.5	10.5	0	0	0	0	
т п, лрг ч, 2023	2	1	0	0	2	1	0	0	13	19	19	0	9.9	0	0	0	0	
Ave Period 24	110 135	9 00874	57 0104	403838	56 4659	22 3986	24 1555	0	47 8470	25 4475	145.074	318444	10 2621	0	0		0	i
04-04-2025 11:59	252	50	125	_ - 03020 87	112	36	55	0	74	36	359	6.5	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	13	19	19	0	9.9	0	0	0	0	
Daily	23.8209	9.14527	6.14189	.157466	2.45270	7.99324	23.2195	0	17.5641	34.1182	234.925	5.69729	10.1854	0	0	0	0	i.
Sat. Apr 5, 2025	60	55	134	.26	32	22	67	0	27	35	360	13	10.3	0	0	0	0	
,,	2	1	0	0	2	1	0	0	12	33	9	.8	9.9	0	0	0	0	
Ave Period 24	23.8209	9.14527	6.14189	.157466	2.45270	7.99324	23.2195	0	17.5641	34.1182	234.925	5.69729	10.1854	0	0	0	0	İ
05-04-2025 04:55	60	55	134	.26	32	22	67	0	27	35	360	13	10.3	0	0	0	0	
	2	1	0	0	2	1	0	0	12	33	9	8	99	0	0	0	0	

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-2)

Ambient Air Quality Results of Pyi Nyaung Village

Header

Start Dat	22-11 e 4:36:0	-2024 00 PM										-						
End Dat	e 23-11 4:35:0	-2024 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	43.7416	7.5875	.031944	.083201	29.0125	17.5291	6.2625	0	82.7041	23.0763	235.471	.086111	10.2761	0	0	0	0	
Min	2	75 1	4	.64	54 2	32 1	0	0	39	31 19	356 4	0	9.7	0	0	0	0	
EPAS 919217	43.7416 148 2	7.5875 75 1	.031944 4 0	.083201 .64 0	29.0125 54 2	17.5291 32 1	6.2625 63 0	0 0 0	82.7041 100 39	23.0763 31 19	235.471 358 4	.086111 2.3 0	10.2761 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Fri, Nov 22, 2024	51.2612 125 14	7.63963 21 1	0 0 0	.059527 .55 0	33.5518 54 2	21.7432 32 10	4.22297 52 0	0 0 0	95.8738 100 69	21.8265 26 20	315.520 328 258	.000225 .1 0	10.4281 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 22-11-2024 11:59	51.2612 125 14	7.63963 21 1	0 0 0	.059527 . <mark>55</mark> 0	33.5518 54 2	21.7432 32 10	4.22297 52 0	0 0 0	95.8738 100 69	21.8265 26 20	315.520 328 258	.000225 .1 0	10.4281 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Sat, Nov 23, 2024	40.3895 148 2	7.56425 75 1	.046184 4 0	.093755 . <mark>64</mark> 0	26.9889 54 2	15.6506 32 1	7.17168 63 0	0 0 0	76.8333 100 39	23.6335 31 19	199.787 358 4	.124397 2.3 0	10.2083 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 23-11-2024 04:35	40.3895 148 2	7.56425 75 1	.046184 4 0	.093755 . <mark>64</mark> 0	26.9889 54 2	15.6506 32 1	7.17168 63 0	0 0 0	76.8333 100 39	23.6335 31 19	199.787 358 4	.124397 2.3 0	10.2083 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	

Header

Start Dat	05-12 te 2:47:0	2-2024 00 PM										-						
End Dat	te 06-12 2:46:0	2-2024 00 PM																
_	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V			_	_	
Ave	51.8625	6.79861	.800694	.109694	34.3	15.4145	4.17916	0	84.7527	22.2138	294.670	.113402	10.2505	0	0	0	0	
Max Min	245 2	58 1	0	.93	2	29 1	32 0	0	44	30 18	360	3.3 0	9.6	0	0	0	0	
EPAS 919217	51.8625	6.79861 58	.800694 13	.109694 93	34.3	15.4145 29	4.17916	0	84.7527	22.2138	294.670	.113402	10.2505	0	0	0	0	
	2	1	0	0	2	1	0	0	44	18	1	0	9.6	0	0	0	0	I
Daily	67.8535	13.3435	.010849	.171211	24.3598	13.1681	9.18083	0	87.6039	22.4177	307.144	.010849	10.3846	0	0	0	0	L
Sun, May 12, 2024	245	58	2	.84	60	27	32	0	100	30	336	.6	10.7	0	0	0	0	
	11	1	0	0	2	1	0	0	48	19	36	0	9.9	0	0	0	0	
Ave Period 24	67.8535	13.3435	.010849	<u>.</u> 171211	24.3598	13.1681	9.18083	0	87.6039	22.4177	307.144	.010849	10.3846	0	0	0	0	L
12-05-2024 11:59	245	58	2	.84	60	27	32	0	100	30	336	.6	10.7	0	0	0	0	
	11	1	0	0	2	1	0	0	48	19	36	0	9.9	0	0	0	0	Ļ
Daily	41.8928	2.71815	1.29312 13	.071341	40.4971 67	16.8151 20	1.06087 27	0	82.9751 100	22.0868	286.892	.177339	10.1669	0	0	0	0	
Wed, Jun 12, 2024	2	1	0	<u>.95</u> 0	2	1	0	0	44		1	0	9.6	0	0	0	0	
Ave Period 24	41.8928	2.71815	1.29312	.071341	40.4971	16.8151	1.06087	0	82.9751	22.0868	286.892	.177339	10.1669	0	0	0	0	
12-00-2024 02:46	138 2	38 1	13 0	.93	67 2	29 1	27 0	0	100 44	30 18	360 1	3.3 0	10.3 9.6	0	0	0	0	
	<u> </u>				<u>_</u>		<u> </u>						0.0					

Header

Start Dat	13-01 te 4:21:0	-2025 00 PM					_		_			•						
End Dat	te 14-01 4:20:0	-2025 00 PM																
Δνε	PMA ug/m3 84 1312	6 49097	CO2 ppm 70 6916	CO ppm 217020	NO2 ppb 31 7131	O3 ppb 15 5229	SO2 ppb 12 0923	PrpM mm	RH %	TmpC Deg. C 17 9638	WDir Deg. 167 231	WSpd mph	Pwr V	0	0	0	0	
Max	545	51	170	2.43	71	30	305	0	100	28	358	.4	10.7	0	0	0	0	
Min	2	1	8	0	2	1	0	0	31	11	1	0	9.7	0	0	0	0	
EPAS 919217	84.1312 545 2	6.49097 51 1	70.6916 170 8	.217020 2.43 0	31.7131 71 2	15.5229 <u>30</u> 1	12.0923 305 0	0 0 0	75.4645 100 31	17.9638 28 11	167.231 358 1	.002013 .4 0	10.2833 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily	85.7886	10.2570	52.9673	.229564	27.6230	15.4836	13.4379	0	81.2984	17.4727	155	0	10 <u>.</u> 4873	0	0	0	0	l
Mon, Jan 13, 2025	177 28	38 1	83 8	1.12 0	56 2	27 1	118 0	0 0	100 32	26 13	155 155	0 0	10.7 10	0 0	0	0	0	
Ave Period 24	85 7886	10 2570	52 9673	229564	27 6230	15 4836	13 4379	0	81 2984	17 4727	155	0	10 4873		0	0	0	i
13-01-2025 11:59	177	38	83	<u>.229504</u> 1.12	56	27	118	0	100	26	155	0	10.7	0	0	0	0	
	28	1	8	0	2	1	0	0	32	13	155	0	10	0	0	0	0	
Daily	83.3557	4.72884	78.9847	.211151	33.6269	15.5412	11.4627	0	72.7349	18.1936	172.954	.002956	10.1878	0	0	0	0	L
Tue, Jan 14, 2025	545 2	51 1	20	2.43 0	71 2	30 1	305 0	0 0	100 31	28 11	358 1	.4 0	10.5 9.7	0 0	0 0	0 0	0 0	l
Ave Period 24	83.3557	4.72884	78.9847	.211151	33.6269	15.5412	11.4627	0	72.7349	18.1936	172.954	.002956	10.1878	0	0	0	0	i
14-01-2025 04:20	545	51	170	2.43	71	30	305	0	100	28	358	.4	10.5	0	0	0	0	
	2	1	20	0	2	1	0	0	31	11	1	0	97	0	0	0	0	4

Header

Start Dat	18-02 te 2:20:0	2-2025 00 PM					_		_			•						
End Dat	e 19-02 2:19:0	2-2025 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V		•			
Ave Max Min	160.945 452 2	7.77083 52 1	136.055 218 77	.410687 1.81 0	35.9006 82 2	15.6888 33 1	28.8215 99 0	0 0 0	57.8819 100 8	20.2409 33 11	181.107 359 0	.004583 .3 0	10.1228 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0	
EPAS 919217	160.945 452 2	7.77083 52 1	136.055 218 77	.410687 1.81 0	35.9006 82 2	15.6888 33 1	28.8215 99 0	0 0 0	57.8819 100 8	20.2409 33 11	181.107 359 0	.004583 .3 0	10.1228 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Tue, Feb 18, 2025	145.763 265 3	16.4413 52 1	120.379 161 77	.601034 1.81 0	21.6844 67 2	11.9120 29 1	48.1810 98 13	0 0 0	44.4568 82 8	22.5931 33 14	181.868 344 9	.003965 .3 0	10.2915 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 18-02-2025 11:59	145.763 265 3	16.4413 52 1	120.379 161 77	.601034 1.81 0	21.6844 67 2	11.9120 29 1	48.1810 98 13	0 0 0	44.4568 82 8	22.5931 33 14	181.868 344 9	.003965 .3 0	10.2915 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Wed, Feb 19, 2025	171.184 452 2	1.92325 9 1	146.627 218 82	.282313 1.13 0	45.4883 82 2	18.2360 <u>33</u> 1	15.7651 99 0	0 0 0	66.9360 100 8	18.6546 <u>33</u> 11	180.594 359 0	.005 .3 0	10.0090 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 19-02-2025 02:19	171.184 452 2	1.92325 9 1	146.627 218 82	.282313 1.13	45.4883 82 2	18.2360 33 1	15.7651 99 0	0 0 0	66.9360 100 8	18.6546 33 11	180.594 359 0	.005 .3 0	10.0090 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0	

Header

Start Dat	18-03 e 2:51:0	3-2025 00 PM										•						
End Dat	e 19-03 2:50:0	3-2025 00 PM																
A.c.	PMA ug/m3	0.00544	CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V	0	0	0	0	
Ave	371	0.0004 I 55	40.9000 117	1 87	139	21.0937 41	45.5506 140	0	40.7020 89	20.9100	353	.019027 Q	10.1363	0	0	0	0	
Min	2	1	0	0	2	1	0	0	12	19	3	0	9.3	0	0	0	0	
EPAS 919217	135.584 371 2	8.88541 55 1	48.9666 117 0	.615916 1.87 0	61.0951 139 2	21.6937 41 1	45.5506 140 0	0 0 0	48.7020 89 12	26.9180 35 19	117.461 353 3	<mark>.019027</mark> .9 0	10.1363 10.7 9.3	0 0 0	0 0 0	0 0 0	0 0 0	
Daily	160.568	18.9052	36.9162	.785409	40.1730	17.8524	46.1912	0	38.9617	28.5701	118.127	.004189	10.4058	0	0	0	0	I
Tue, Mar 18, 2025	371	55	85	1.87	103	32	75	0	65	35	297	.3	10.7	0	0	0	0	
	42	1	0	.22	2	1	26	0	17	22	10	0	9.9	0	0	0	0	l
Ave Period 24	160.568	18.9052	36.9162	.785409	40.1730	17.8524	46.1912	0	38.9617	28.5701	118.127	.004189	10.4058	0	0	0	0	L
18-03-2025 11:59	371	55	85	1.87	103	32	75	0	65	35	297	.3	10.7	0	0	0	0	
	42	1	0	.22	2	1	26	0	17	22	10	0	9.9	0	0	0	0	L
Daily	120.189	2.71156	56.3916 117	.511481	73.9865	24.0606	45.1560	0	54.7037	25.9001	117.050	.028170	9.97037	0	0	0	0	
Wed, Mar 19, 2025	350	18 1	0	1.28	139	41 1	140 0	0	89 12	35 19	353	.9 0	10.3 9 3	0	0	0	0	
Ave Period 24	400.400	0 74450	56 2046		72.0965	24.0505	45 4500		54 7027	25 0004	117.050	020470	0.07027					ł
19-03-2025 02:50	120 . 189 350	2.71150 18	50.3916 117	.511481	13.9865	24.0606 41	45.1560 140	0	54.7037 80	∠5.9001 35	353	.028170 Q	9.97037	0	0	0	0	
	2	1	0	1.20	2	1	0	0	12	10	3	.0	0.3	0	0	0	0	1

Header

Start Dat	28-04 e 7:02:0	I-2025 00 AM										•						
End Dat	e 29-04 7:01:0	I-2025 00 AM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave Max Min	1160.97 3399 2	7 .16944 63 1	21.6631 325 0	.22675 12.84 0	77.2090 329 2	25.5125 51 1	12.9645 62 0	.007895 . <mark>48</mark> 0	76.4986 100 28	25.7784 34 21	201.364 359 0	.227708 4.8 0	10.0988 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
EPAS 919217	1160.97 3399 2	7.16944 63 1	21.6631 325 0	.22675 12.84 0	77.2090 329 2	25.5125 51 1	12.9645 62 0	.007895 .48 0	76.4986 100 28	25.7784 34 21	201.364 359 0	.227708 4.8 0	10.0988 10.5 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Mon, Apr 28, 2025	139.714 1056 2	8.54813 63 1	26.8693 52 0	.192102 . <mark>86</mark> 0	85.9440 158 2	27.1630 45 1	15.7396 62 0	.007691 .48 0	81.5500 100 28	24.5687 32 21	217.890 358 0	.145874 3.1 0	10.1601 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 28-04-2025 11:59	1 39.714 1056 2	8.54813 63 1	26.8693 52 0	.192102 . <mark>86</mark> 0	85.9440 158 2	27.1630 45 1	15.7396 62 0	.007691 .48 0	81.5500 100 28	24.5687 32 21	217.890 358 0	.145874 3.1 0	10.1601 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Tue, Apr 29, 2025	3624.60 3399 2	3.84360 55 1	9.10426 325 0	.310331 12.84 0	56.1374 329 2	21.5308 51 1	6.27014 32 0	.008388 .24 0	64.3127 100 42	28.6966 34 24	161.497 359 0	.425118 4.8 0	9.95094 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 29-04-2025 07:01	3624.60 3399 2	3.84360 55 1	9.10426 325 0	.310331 12.84	56.1374 329 2	21.5308 51 1	6.27014 32 0	.008388 .24 0	64.3127 100 42	28.6966 34 24	161.497 359 0	.425118 4.8 0	9.95094 10.2 9.6	0 0 0	0 0 0	0 0 0	0 0 0	

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-3)

Ambient Air Quality Results of Ku Pyin Village

Header

Start Dat	11-11 e 3:04:0	I-2024 00 PM										-						
End Dat	e 12-11 3:03:0	I-2024 00 PM																
Avo	PMA ug/m3	E 70763	CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V	0	0	0	0	
Ave Max Min	87 2	55 1	<u>-0388888</u> 8 0	.67 0	128 2	56 1	49 0	.13 0	100 57	30 21	354 0	3.6 0	10.3109 10.7 9.7	0 0	0 0	0	0	
EPAS 919217	19.0034 87 2	5.70763 55 1	.038888 8 0	.105041 .67 0	44.3069 128 2	24.5868 56 1	7.61041 49 0	<mark>.000527</mark> .13 0	92.4555 100 57	23.9097 30 21	124.513 354 0	. 157083 3.6 0	10.3109 10.7 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Mon, Nov 11, 2024	25.8227 72 3	8.71641 44 1	0 0 0	.095037 .67 0	53.8675 128 13	27.7611 56 16	2.73507 31 0	.001417 .13 0	100 100 100	23.1082 25 22	98.5074 332 36	.000373 .1 0	10.4652 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 11-11-2024 11:59	25.8227 72 3	8.71641 44 1	0 0 0	.095037 . <mark>67</mark> 0	53.8675 128 13	27.7611 56 16	2.73507 31 0	.001417 .13 0	100 100 100	23.1082 25 22	98.5074 332 36	.000373 .1 0	10.4652 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Wed, Dec 11, 2024	14.9601 87 2	3.92367 55 1	.061946 8 0	.110973 .29 .03	38.6382 92 2	22.7046 49 1	10.5011 49 0	0 0 0	87.9823 100 57	24.3849 30 21	139.932 354 0	.25 3.6 0	10.2193 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 11-12-2024 03:03	14.9601 87 2	3.92367 55	.061946 8 0	.110973 .29	38.6382 92 2	22.7046 49	10.5011 49 0	0 0	87.9823 100 57	24.3849 30 21	139.932 354 0	.25 3.6	10.2193 10.5 9 7	0 0	0 0	0 0	0	

Header

Start Dat	02-12 te 2:14:0	2-2024 00 PM										•						
End Dat	te 03-12 2:13:0	2-2024 00 PM																
_	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V		_		_	
Ave	24.2392	4.91933	2.18776 30	.075618 29	35.7545 67	17.2649 30	2.33936	0	88.0563 100	22.3129 29	168.748 359	.212934	10.2846	0	0	0	0	
Min	2	1	0	0	2	1	0	0	53	29 19	0	0	9.7	0	0	0	0	
EPAS 919217	24.2392 96 2	4.91933 40 1	2.18776 <u>30</u> 0	.075618 .29 0	35.7545 67 2	17.2649 30 1	2.33936 40 0	0 0 0	88.0563 100 53	22.3129 29 19	168.748 359 0	.212934 4.2 0	10.2846 10.6 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Mon, Dec 2, 2024	35.2273 96 6	8.17094 40 1	3.26837 30 0	.074957 .29 .02	31.5179 63 2	18.4581 29 1	3.82735 40 0	0 0 0	91.6883 100 58	22.3264 28 19	83.9709 359 0	.035042 1.6 0	10.4104 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 02-12-2024 11:59	35.2273 96 6	8.17094 40 1	3.26837 30 0	.074957 .29 .02	31.5179 63 2	18.4581 29 1	3.82735 40 0	0 0 0	91.6883 100 58	22.3264 28 19	83.9709 359 0	.035042 1.6 0	10.4104 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Tue, Dec 3, 2024	16.7033 67 2	2.68933 19 1	1.44665 26 0	.076072 . <mark>23</mark> 0	38.6600 67 2	16.4466 <u>30</u> 1	1.31887 13 0	0 0 0	85.5697 100 53	22.3036 29 19	226.889 358 0	.334935 4.2 0	10.1983 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 03-12-2024 02:13	16.7033 67 2	2.68933 19 1	1.44665 26 0	.076072 .23 0	38.6600 67 2	16.4466 <u>30</u> 1	1.31887 13 0	0 0 0	85.5697 100 53	22.3036 29 19	226.889 358 0	.334935 4.2 0	10.1983 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	

Header

Environmental Report

Start Dat	16-01 te 2:47:0	I-2025 00 PM										•						
End Dat	e 17-01 2:46:0	I-2025 00 PM																
Ave Max Min	PMA ug/m3 33.2868 202 2	7.22847 54 1	CO2 ppm 81.8812 129 32	CO ppm .116770 .75 0	NO2 ppb 33.7840 78 2	O3 ppb 16.3590 29 1	SO2 ppb 3.40277 39 0	PrpM mm 0 0	RH % 74.9243 100 17	TmpC Deg. C 17.125 31 9	WDir Deg. 78.3562 <u>357</u> 2	WSpd mph .000069 .1 0	Pwr V 10.2356 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
EPAS 919217	33.2868 202 2	7 <u>.22847</u> 54 1	81.8812 129 32	.116770 .75 0	33.7840 78 2	16.3590 29 1	3.40277 39 0	0 0 0	74.9243 100 17	17.125 31 9	78.3562 357 2	.000069 .1 0	10.2356 10.7 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Thu, Jan 16, 2025	42.5569 72 2	15.3128 54 1	72.8716 104 43	.132730 .24 .06	28.1121 60 2	16.8119 29 1	5.19168 26 0	0 0 0	78.0813 100 18	17.6817 30 11	72.6980 357 22	0 0 0	10.4079 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 16-01-2025 11:59	42.5569 72 2	15.3128 54 1	72.8716 104 43	.132730 .24 .06	28.1121 60 2	16.8119 29 1	5.19168 26 0	0 0 0	78.0813 100 18	17.6817 30 11	72.6980 357 22	0 0 0	10.4079 10.7 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Daily Fri, Jan 17, 2025	27.5073 202 2	2.18827 11 1	87.4983 129 32	.106820 .75 0	37.3201 78 2	16.0766 29 1	2.28748 39 0	0 0 0	72.9560 100 17	16.7779 31 9	81.8838 356 2	.000112 .1 0	10.1282 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 17-01-2025 02:46	27.5073 202 2	2.18827 11 1	87.4983 129 32	.106820 .75 0	37.3201 78 2	16.0766 29 1	2.28748 39 0	0 0 0	72.9560 100 17	16.7779 31 9	81.8838 356 2	.000112 .1 0	10.1282 10.3 9.6	0 0 0	0 0 0	0 0 0	0 0 0	

Header

Start Dat	27-02 te 4:30:0	2-2025 00 PM										1						
End Dat	te 28-02 4:29:0	2-2025 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	69.5608	8.76740	129.455	.217404	38.8983	18.2101	9.38900	0	60.6089	21.8851	193.716	.031106	9.98065	0	0	0	0	
Мах	161	68	184	.8	91	36	58	0	100	34	345	1.3	10.5	0	0	0	0	
Min	2	1	86	0	2	1	0	0	13	13	3	0	9.3	0	0	0	0	_
EPAS	69.5608	8.76740	129.455	.217404	38.8983	18.2101	9.38900	0	60.6089	21.8851	193.716	.031106	9.98065	0	0	0	0	
919217	161	68	184	.8	91	36	58	0	100	34	345	1.3	10.5	0	0	0	0	
	2	1	86	0	2	1	0	0	13	13	3	0	9.3	0	0	0	0	
Daily	68 3875	16 1648	121 398	226770	33 7527	19 2449	15 4031		59 3095	21 1625	199 561	L 0	10 1763					
Daily Thu Eeb 27, 2025	136	48	154	.8	76	36	37	0	89	32	262	0	10.1703	0	0	0	0	
1110, 1 65 27, 2025	17	1	86	.06	2	1	0	0	16	15	131	0	9.6	0	0	0	0	
Ave Period 24	68 3875	16 1648	121 398	226770	33 7527	19 2449	15 4031	0	59 3095	21 1625	199.561	0	10 1763	0	0	0	0	i
27-02-2025 11:59	136	48	154	.220110	76	36	37	0	89	32	262	0	10.1763	0	0	0	0	
	17	1	86	.06	2	1	0	0	16	15	131	0	9.6	0	0	0	0	
Daily	70.0941	5.40222	133.117	.213147	41.2368	17.7398	6.65587	0	61.1993	22.2135	191.060	.045242	9.89170	0	0	0	0	i.
Fri. Feb 28, 2025	161	68	184	.72	91	35	58	0	100	34	345	1.3	10.2	0	0	0	0	
	2	1	87	0	2	1	0	0	13	13	3	0	9.3	0	0	0	0	
Ave Period 24	70.0941	5.40222	133.117	.213147	41.2368	17.7398	6.65587	0	61.1993	22.2135	191.060	.045242	9.89170	0	0	0	0	i
28-02-2025 04:28	161	68	184	.72	91	35	58	0	100	34	345	1.3	10.2	0	0	0	0	
	2	1	87	0	2	1	0	0	13	13	3	0	93	0	0	0	0	

Header

Start Dat	25-03 4:59:0	3-2025 00 AM										1						
End Dat	e 26-03 4:58:0	3-2025 00 AM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	61.1298	7.70833	14.5493	.268826	46.7701	17.1090	16.7666	0	46.9159	26.7368	195.263	.018194	10.1642	0	0	0	0	
Max	301	48	55	./4	127	36	66	0	100	36	359	1.7	10.5	0	0	0	0	
IVITI	2		U	0	2	•	U	U	13	20	0	0	9.0	0	•	U	0	
EPAS	61.1298	7.70833	14.5493	.268826	46.7701	17.1090	16.7666	0	46.9159	26.7368	195.263	.018194	10.1642	0	0	0	0	
919217	301	48	55	.74	127	36	66	0	100	36	359	1.7	10.5	0	0	0	0	
I	2	1	0	0	2	1	0	0	13	20	0	0	9.6	0	0	0	0	I
Dailv	65.9062	8.74057	16.2243	.282620	55.2278	19.9675	19.3260	0	51.0806	25.5985	206.428	.016827	10,2019	0	0	0	0	Ē
Tue, Mar 25, 2025	301	48	55	.74	127	36	66	0	100	36	359	1.7	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	13	20	0	0	9.7	0	0	0	0	
Ave Period 24	65.9062	8.74057	16.2243	282620	55.2278	19.9675	19.3260	0	51.0806	25.5985	206.428	.016827	10.2019	0	0	0	0	i
25-03-2025 11:59	301	48	55	.74	127	36	66	0	100	36	359	1.7	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	13	20	0	0	9.7	0	0	0	0	
Daily	42.9030	3.76923	8.15719	.216187	14.4949	6.20066	7	0	31.0234	31.0802	152.658	.023411	10.0204	0	0	0	0	İ
Wed, Mar 26, 2025	119	43	24	.28	91	29	26	0	56	35	358	.5	10.2	0	0	0	0	
	3	1	0	.1	2	1	0	0	21	25	0	0	9.6	0	0	0	0	
Ave Period 24	42.9030	3.76923	8.15719	.216187	14.4949	6.20066	7	0	31.0234	31.0802	152.658	.023411	10.0204	0	0	0	0	Í
26-03-2025 04:58	119	43	24	.28	91	29	26	0	56	35	358	.5	10.2	0	0	0	0	
	3	1	0	1	2	1	0	0	21	25	0	0	9.6	0	0	0	0	1

Header

Start Dat	22-04 4:25:0	-2025 00 AM										•						
End Dat	e 23-04 4:24:0	-2025 00 AM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave Max	37.5131 101	8 <u>.</u> 97222 56	48.2965 153	.176875 32	59.1236 141	24.5451 44	20.7263 70	0	61.3590 100	29 <u>.</u> 2819 36	151.586 346	.68625 5 9	10.1879 10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	23	24	1	0	9.7	0	0	0	0	
EPAS 919217	37.5131 101 2	8.97222 56 1	48.2965 153 0	.176875 .32 0	59.1236 141 2	24.5451 44 1	20.7263 70 0	0 0 0	61.3590 100 23	29.2819 36 24	151.586 346 1	.68625 5.9 0	10.1879 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Daily	45.3276	10.68	59.1472	.178314	72.0068	29.8553	19.2417	0	68.0170	28 <u>.</u> 0170	144 <u>.</u> 324	.339063	10.1971	0	0	0	0	
Tue, Apr 22, 2025	101 2	56 1	0	.32 0	141 2	44 1	70 0	0 0	100 23	36 24	346 1	4.1 0	10.5 9.7	0 0	0 0	0 0	0 0	
Ave Period 24	45.3276	10.68	59 <u>.</u> 1472	.178314	72.0068	29.8553	19 <u>.</u> 2417	0	68.0170	28 <u>.</u> 0170	144.324	.339063	10 <u>.</u> 1971	0	0	0	0	ĺ
22-04-2025 11:59	101	56	153	.32	141	44	70	0	100	36	346	4.1	10.5	0	0	0	0	
Della	2 86415	14	184905	0	2	1	27 3094	0	23 31 8377	24 34 8905	183 788	2 22566	9.7	0	U	U		
Wed, Apr 23, 2025	15	41	4	.170430	2	1	53	0	38	36	268	5.9	10.1471	0	0	0	0	
,	2	1	0	.1	2	1	3	0	27	33	37	.3	9.7	0	0	0	0	
Ave Period 24	2.86415	1.4	.184905	.170490	2	1	27.3094	0	31.8377	34.8905	183.788	2.22566	10.1471	0	0	0	0	
23-04-2025 04:24	15	41	4	.24	2	1	53	0	38	36	268 37	5.9	10.2	0	0	0	0	
	2		v	.1	2		3	U	21	33	51	.3	9.7	0	U	U	U	1

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-D

Corporate Social Responsibility

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီနှင့် ရွှေတောင်သတ္တုထုတ်လုပ်ရေးကုမ္ပဏီတို့မှ ဒေသဖွံ့ဖြိုးရေးအတွက် ဆောင်ရွက်ထားရှိမှုများ

စဥ်	အကြောင်းအရာ	Nov - 2024	Dec - 2024	Jan - 2025	Feb - 2025	Mar - 2025	Apr - 2025	Total
2	လမ်းပန်းဆက်သွယ်ရေး ကိုးကွက်ကောင်းမှုန်အောင်	17.726.813	796.000	175,200	744.000			19,442,013
	ဆောင်ရွက်ပေးနိုင်မှု			,	,			,,
	ပြည်သူများ ရေရရှိမှု							
J	အထောက်အကူပြု ဆောင်ရက်ပေးနိုင်မ	441,000	367,500	441,000	572,200			1,821,700
	သွ ု ။ လျှပ်စစ်မီးရရှိရေး							
२	အထောက်အကူပြု သားသိုးသိုးသူကို ရှိန်းမှု							0
	ဆောငရွကပေးနုငမှု ပဿရေး ဖံဖြိုးတိုးတက်စေရန်							
9	အထောက်အကူပြု	1,645,600	1,602,400	2,090,500	4,761,500		703,800	11,762,400
	ဆောင်ရွက်ပေးနိုင်မှု					958,600		
6	ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်စေရနဲ အထောက်အကပြ၊	220,532	319,132					539.664
J	ဆောင်ရွက်ပေးနိုင်မှု							,
	လူမှုရေးနှင့် ကယ်ဆယ်ရေး							
6	အထောက်အကူပြု ဆောင်ရက်ပေးနိုင်မ	184,000	922,500	3,918,100	279,800	1.998.400	2,204,800	9,507,600
	ဘာသာသာသနာရေး					_,,		
9	အထောက်အကူပြု	600,000	1,237,500		1,000,600			4,138,100
	ဆောင်ရွက်ပေးနိုင်မှု 					1,300,000		
ຄ	သဘာဝဘေးအန္တရာယကျရောက ပျက်စီးမှုများ အထောက်အကူပြု						236,277,100	236,277,100
	ဆောင်ရွက်ပေးနိုင်မှု							
	စုစုပေါင်း	20,817,945	5,245,032	6,624,800	7,358,100	4,257,000	239,185,700	283,488,577

လမ်းပန်းဆက်သွယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက် <u>ပေးခြင်း</u>

ပုံ- ၂၀၂၄ခုနှစ်၊ ဒီဇင်ဘာလအတွင်း သာစည်မြို့နယ်၊ လှိုင်းတက်ကျေးရွာအုပ်စု၊ လှိုင်းတက်ကျေးရွာရှိ ကျေးရွာလမ်းအား ကွန်ကရစ်လမ်းခင်းရန်အတွက် လိုအပ်သော ဘိလပ်မြေအိတ်များကို လူ၊ဒါန်းခြင်း။

ပုံ - ၂၀၂၄ခုနှစ်၊ နိုဝင်ဘာလအတွင်း ကူပြင်ကျေးရွာသို့ သွားသည့် ကျေးလက်လမ်းအား လိုအပ်သည့်မြေနှင့်ကျောက်များဖြည့်၍ စက်ယန္တရားများဖြင့် မြေညှိပေးခြင်း။

<u>ပညာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း</u>

ပုံ- ၂၀၂၄ခုနှစ်၊ ဇွန်လမှ ၂၀၂၅ခုနှစ်၊ မတ်လအထိ ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာအခြေခံပညာကျောင်းများအတွက် လိုအပ်သော ဆရာ/ဆရာမများ ငှားရမ်းနိုင်ရန်အတွက် လစာငွေများ ထောက်ပံ့ပေးခြင်း။

ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာ အခြေခံပညာကျောင်းများမှ ကျောင်းသား/ကျောင်းသူ (၁၀)ဦးအား ပညာသင်ထောက်ပံ့ကြေးပေးအပ်ခြင်း။

<u>ပညာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း</u>

ပုံ- ၂၀၂၅နှစ်၊ ဇန်နဝါရီလတွင် ကူပြင်ကျေးရွာ၊ အခြေခံပညာအလယ်တန်းကျောင်းတွင် ကျင်းပပြုလုပ်သော ပညာရေးစုံညီပွဲတော်အတွက် ရန်ပုံငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းမှ ယင်းမာပင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်း ကျောင်းသို့ G12 ကျောင်းသား/သူများ စာမေးပွဲ သွားရောက်ဖြေဆိုနိုင်ရန်အတွက် အကြိုအဝို့ ပြုလုပ်ပေးခြင်း။

ပုံ- ၂၀၂၅နှစ်၊ ဇန်နဝါရီလတွင် ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းတွင် ကျင်းပပြုလုပ်သော ပညာရေးစုံညီပွဲတော်အတွက် ရန်ပုံငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ကူပြင်ကျေးရွာ၊ အခြေခံပညာအလယ်တန်းကျောင်းမှ ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်း ကျောင်းသို့ G5 နှင့် G9 ကျောင်းသား/သူများ စာမေးပွဲ သွားရောက်ဖြေဆိုနိုင်ရန်အတွက် အကြိုအပို့ ပြုလုပ်ပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းရှိ နှစ်ထပ်ကျောင်းဆောင်၏ ခေါင်မိုးနှင့် မျက်နှာကျက်များ ပြုပြင်ရန်နှင့် အိမ်သာ(၈)လုံးတွဲအတွက် အိမ်သာကျင်း အသစ်တည်ဆောက်ရန် လိုအပ်သော ငွေအား လှူဒါန်းခြင်း။

ပုံ- ၂၀၂၅နှစ်၊ ဖေဖော်ဝါရီလတွင် ကူပြင်စာသင်ကျောင်းတွင် "ကူးစက်တတ်သော ရောဂါများအကြောင်း သိကောင်းစရာ" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပနေစဉ်။

ကျွန်းမာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ - ကူပြင်ကျေးရွာနှင့် ပြည်ညောင်ကျေးရွာအတွင်းရှိ ဒေသနေပြည်သူများအား လစဥ် အခမဲ့ ကျန်းမာရေး စောင့်ရှောက်ပေးနေစဥ်။ <u>ပြည်သူများ ရေရရှိရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီ ဆောင်ရွက်</u> <u>ပေးခြင်း</u>

ပုံ- ကူပြင်ကျေးရွာရှိ သောက်ရေသန့်စက်တွင် ပြုပြင်ရန် လိုအပ်သော Magnetic connector အား ဝယ်ယူ၍ တပ်ဆင်ပေးခြင်း။

ပုံ- ပြည်ညောင်ကျေးရွာ အခြေခံပညာအထက်တန်းကျောင်းအတွက် သုံးရေ ကူညီပံ့ပိုးပေးခြင်း။

ပုံ- ပဲခူးမြို့၊ ပဲခူးတက္ကသိုလ်အနီး ဆုတောင်းပြည့်ကျောင်းတိုက်သို့ နဝကမ္မ အလှူငွေ ထည့်ဝင်လှူဒါန်းပေးခြင်း။

ပုံ- ကူပြင်ကျေးရွာ (၁၂)ကြိမ်မြောက် မဟာပဌာန်းရွတ်ဖတ်ပူဇော်ပွဲနှင့် ဆွမ်းဆန်စိမ်းလောင်းလှူသည့်ပွဲတွင် ဆန်နှင့် ဝတ္တုငွေ လောင်းလှူခြင်း။

<u>လူမှုရေးနှင့်ကယ်ဆယ်ရေး ဖွံ့ဖြိုတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီပေးခြင်း</u>

ပုံ- ပြည်ညောင်ကျေးရွာ ဘောလုံးကွင်းအသစ် တည်ဆောက်ရာတွင် လိုအပ်သော ဘိလပ်မြေအိတ်များ လှူဒါန်းခြင်း။

ပုံ -၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလမှ စတင်၍ လစဥ် ကူပြင်ကျေးရွာရှိ အသက်အရွယ်ကြီးရင့်သော အဖိုးအဖွားများအား ကူညီထောက်ပံ့ပေးခြင်း။

သဘာ၀ဘေးအန္တရာယ် ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့လယ်ဗလီ (မြင်းဘက်)တွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသော အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့ပေါ် ရပ်ကွက်များရှိ ငလျင်ဘေးသင့်ပြည်သူများကို ထမင်းဘူးများ ဝေငှခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကန်ဦးကျောင်းတွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသေ အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မက်သဒစ်အသင်းတော် (မြင်းဘက်)တွင် ငလျင်ဘေးဒဏ်ကြောင့် ပျက်စီးသွားသော အဆောင်အဦများ ပြန်လည်ပြုပြင်တည်ထောင်ရေးအတွက် လှူဒါန်းခြင်း။

သဘာဝဘေးအန္တရာယ် ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်

<u>ပေးခြင်း</u>

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကန်ဦးကျောင်းနှင့် ပူးပေါင်း၍ ငလျင်ဘေးသင့် ပြည်သူများအတွက် ရေသန့်ကဒ် (၆၀)ကဒ်၊ ဆန် (၅) အိတ်၊ ခေါက်ဆွဲခြောက် အထုပ် (၂၀၀၀) လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့ရှိ ငလျင်ဘေးဒဏ်သင့်ခဲ့သော နေရာများအား ဖြိုဖျက်ရှင်းလင်းရန်အတွက် စက်ယန္တရားကြီးများ အသုံးပြု၍ ကူညီပေးခြင်း။

ပုံ- သာစည်မြို့နယ်ရှိ ငလျင်ဘေးဒဏ်သင့်ခဲ့သော ပြို/ပျက်/သေဆုံး စုစုပေါင်း အိမ် (၅၀) ထံသို့ ပစ္စည်း(၁၈)မျိုးအား လှူဒါန်းခြင်း။

ပုံ- ပျော်ဘွယ်မြို့၊ မြို့ကံဦးကျောင်းရှိ စာသင်သား ရဟန်းသံဃာများနှင့် ပျော်ဘွယ်မြို့နေ ပြည်သူလူထုများ သောက်သုံးရေသန့် အခက်အခဲမရှိစေရန်အတွက် တစ်နာရီ 1000 လီတာကျ ROသောက်ရေသန့်စက် တပ်ဆင်လှူဒါန်းပေးခြင်း။

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-E

Emergency Preparedness Fire Drill Exercise Reports

EMERGENCY PREPAREDNESS FIRE DRILL EXERCISE REPORT

(28 Nov 2024, APACHE CEMENT FACTORY)

Prepare by Position Department Contact No

: Cho Thazin Thein : Safety Manager : OHS : 09255113710

.

Title: Lubricant caught fire at Line1 (701) Lubricant station area

Contents

- 1. Introduction
- 2. Objectives
- 3. Table Talk Exercise
- 4. Scenario
- 5. Event
- 6. Fire Drill Result
- 7. Debrief
- 8. Appendixes
 - a. Process details flow chart
 - b. Emergency contact list
 - c. Site in charge manage to extinguished lubricant fire using by fire extinguisher
 - d. Site supervisor inform to Hotline 09-255113060
 - e. Firefighter team and Rescue team conduct briefing and start to activate
 - f. Head count team roll call at assembly area
 - g. Firefighting team extinguished Lubricant fire by using fire truck and fire hydrant
 - h. Rescue team relocate injury person to the safe location given first aid treatment
 - i. OHS Manager explain usage of fire extinguisher and some of participant take part the demonstration on the usage of fire extinguisher
 - j. Plant Manager debrief about the fire drill on how important of fire drill in case of emergency

Introduction

Name

City

State

Country

Company Name

: Pyi Nyaung

: Shwe Taung Cement Co.Ltd

(Apache Cement)

: Tharzi Township

: Mandalay Devision

: Myanmar

Apache Cement Plant is situated at Pyi Nyaung Village, Thazi Township, Meiktila District, Mandalay Division.

This is recommended that ERT Emergency Response Team is prepared for any type of emergency that may occur.

Location of Apache Cement Factory

Objective

- To ensure that everyone knows what to do in case of emergency
- By practicing, people know how to escape safely and quickly
- To ensure all individuals in the workplace familiar with escape routes, emergency exits and safety protocols
- To practices everyone safety evacuate the nearest AA in an orderly manner
- Trained person aware on how to rescue injury person who trap inside the fire
- To familiarize on the usage of fire truck & fire fighting such as Fire Hose Reel and fire extinguisher

Table Talk Exercise

Below are the key information to be discussed and concluded:

- The date/time of the exercise was confirmed. The proposed date/time were to be scheduled on 28 Nov 2024 at approximately 8:30 am.
- All personnel involved in the premises are encouraged to participate promptly.
- The passing time criterion is 15 minutes sharp.
- Identification of the premises key roles/responsibilities.
 - a) ERT Controller
 - b) Firefighting team leader/members
 - c) Rescue team leader/members
 - d) Traffic Control team leader/members
 - e) Communication team leader/members
 - f) Head count team leader/members
 - g) Fire truck driver and ambulance
- The purpose of this exercise is to permit the contractors/staffs to understand the procedures and response as accordingly.
- To have a basic knowledge on how to operate a fire extinguisher/hose reel correctly.
- To have a basic knowledge on how to response effectively

Audience	Grade – 1 Students (Male-16/Female-12)	Grade – 1 Students (Male-14/ Female-14)	Grade – 2, 3, 4 Students (Male-15/Female-5)	Busines Social Event Tile Free	570 darlh, toble, bu	Attendance Business Uni Rije Ur decembers	Titte	63:11 001 8:00 pm
Location	At Ku Pyin Village – Basic Education Middle Branch School	At Pyl Nyaung Village – Information Center & Library	At Ku Pyin Village – Monastery	Verue Phila Candicated Dy Chin Nationa (Franci)	Deelonenee Deeloneee	ing access	Signera in	Serrets
024/17/2	715-16			6. De const anno 8. March de Carlos de Carlos 5. March de Carlos 6. March de Carlos 6. Jane de Carlos 7. Carlos de Carlos 7. Carlos de Carlos 7. Carlos de Carlos 7. Carlos de Carlos 7. Carlos de Carlos 7. Notes ten Sein 7. Notes t	Avertale Prev. T.L. R.L. R.L. T.L. Bisser, k. Charact T.I. C.L. Bisser, k.	abin Hards PPME PPME PPME PPME PPME PPME PPME PPM		

Drill Scenario

- About 8:30 am one of PME staff noticed some flame come out from lubricant storage place and some of PME staffs also inside the lubricant room by taking the lubricant.
- Immediately he manages to get Portable FE from nearest FE stand and put out the fire.
 However, 1 of the staff trap in the room and not easy to come out.
- Firstly, he try to rescue the trap person but the fire is growing bigger and can't get go in the lubricant room. He called for help and together with team manage to get fire hose reel by the nearest points to extinguish the fire.
- After sometime, ambulance arrived together with medical team

LEGEND				
	Assembly Point			
- MAR	Fire catch area			
	Fire engine route			
	Fire truck			
	Security check point			

Event

The events are recorded and listed below:

Estimated Time	Events(s)		
8:30 am	Fire Breakout Location Line1 (701) Lubricant station area		
8:31 am	PME staff try to extinguished by fire extinguisher		
8:33 am	PME in charge inform to STC hot line_09255113060		
8:35 am	Activate firefighting team		
8:37 am	Personnel proceed to the nearest Emergency Assembly Area (EAA)		
8:38 am	Head count check each location and report to ERT		
8:39 am	Fire truck and ambulance arrived on site with fully equipped		
8:40 am	Fire was put up and Exercise cease		
8:40 am	Rescue team relocate injury person to the safe location and given first aid treatment		
8:45 am	Debrief by OHS Manager / Plant Manager		

Fire Drill Result

- 1. Total participation: 80
 - a. Firefighting team: 7
 - b. Traffic control team: 4
 - c. Rescue team/ first aider team: 6
 - d. Number of special fire warden: 2
- Assemble Time Record: Approximately 15 ~ 20 minutes (inclusive of reporting headcount to ERT controller)

Debrief

- 1. Recap on the basic procedures when a fire alarm had activated:
 - a. When hear the alarm, stop work
 - b. Turn off the electrical supply in building
 - c. Turn off the equipment and machinery on site
 - d. Move to the assembly area; fast and slowly
 - e. At the assembly area, respective dept-in-charge will act as head count officer to take head count and register in the attendance sheet
 - f. Wait for further instructions by ERT coordinator / ERT controller
- 2. Emphasis on the objective of the exercise and importance to be prepared

Appendixes

a) Process details flow chart

b) STC Emergency contact list

STC Contact Numbers					
Name	Position	Contact numbers			
U Lin Htike	Plant Manager	09255112918			
Daw Nan Maw Maw Aye	Head of General Admin Division	09 255112651			
Daw Cho Thazin Thein	OHS Manager	09255113710			
U Mon Khan	Head of Division	09255112909			
Nay Soe Naing	Head of occupational health & safety	09255112704			
U Zaw Hlaing Oo	ELE Manager	09255111988			
Thiha Soe	PME Manager	09255112897			

Key Personnel	Pager / Hand phone	
Police	199	
Ambulance (Phyu Sin Myitta)	09968014931/09976897934	
Rescue dept	0673404666/0673404777	
Factory and general labour law inspection dept	095032471	
Fire Service (Yin Mar Pin Station)	09445921400 /191	
Meiktala General Hospital	095 84497	
Fire Service (Thar Zi Station)	0642069131	

c) Site in charge manage to extinguished lubricant fire using by fire extinguisher

d) Site supervisor inform to Hotline 09-255113060

e) Firefighter team, Rescue team and First aider team activate

f) Head count team roll call at assembly area

g) Firefighting team extinguished Lubricant fire by using fire truck

h) Rescue team relocate injury person to the safe location given first aid treatment

i) Participant demonstrate on the usage of fire extinguisher

j) OHS Manager / Plant manager debrief about fire drill

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX-F

Monitoring Photo Records

Ambient Air Monitoring Photo Records

Worker Accommodation

Pyi Nyaung Village

Ku Pyin Village

Water Quality Monitoring Photo Records

Ku Pyin Stream

Ye Shin Stream

Supply Water (Reservoir)

Sedimentation Pond 5 (Coal Storage Area)

Sedimentation Pond 7 Effluent (Industrial Wastewater)

Bio tank Effluent

Noise Monitoring Photo Record

Ku Pyin Village

Pyi Nyaung Village

Worker Accommodation