



#### **Bi-Annual Environmental Monitoring Report**

#### SHWE TAUNG MINING COMPANY LIMITED

# Mudstone Quarry Biannual Environmental Monitoring Report (May 2024 to October 2024)

This page is a record of all revisions of this document. All previous issues are hereby superseded and are to be destroyed.

| 0   | November   | Bi-annual reporting to ECD | en                                 |                  | 4                                          |
|-----|------------|----------------------------|------------------------------------|------------------|--------------------------------------------|
|     | 1 2024 1 . |                            | Hein Latt<br>Environmental Manager | -<br>Head of HSE | Kyaw Naing Soe<br>Deputy Managing Director |
| Rev | Date       | Description                | Prepared by                        | Checked by       | Approved by                                |

#### SHWE TAUNG MINING COMPANY LIMITED



#### **Bi-Annual Environmental Monitoring Report**

#### **Table of Contents**

| 1. | Introduction                                                 | 4  |
|----|--------------------------------------------------------------|----|
|    | 1.1 Executive Summary                                        | 4  |
|    | 1.2 Purpose of Environmental Monitoring                      | 5  |
|    | 1.3 Health, Social and Environmental Department              | 5  |
| 2. | Environmental Performance Indicators and Monitoring Schedule | 5  |
|    | Project Information                                          | 7  |
|    | 3.1 Project Location                                         | 7  |
|    | 3.2 Project Description                                      | 8  |
| 4. | Environmental Monitoring Program                             | 8  |
|    | 4.1 Dust Monitoring                                          | 8  |
|    | 4.1.1 Monitoring Result for Dust Deposition Monitoring       | 8  |
|    | 4.2 Ambient Air Monitoring                                   | 9  |
|    | 4.2.1 Monitoring Location                                    | 9  |
|    | 4.2.2 Monitoring Method                                      | 11 |
|    | 4.2.3 Monitoring Result for Ambient Air Quality Monitoring   | 11 |
|    | 4.2.4 Air Quality Index                                      | 12 |
|    | 4.2.5 Evaluation                                             | 14 |
|    | 4.2.6 Air Quality Mitigation Measures                        | 16 |
|    | 4.3 Water Quality Monitoring                                 | 17 |
|    | 4.3.1 Monitoring Location                                    | 17 |
|    | 4.3.2 Monitoring Result for Water Quality                    | 19 |
|    | 4.3.3 Water Quality Mitigation Measures                      | 22 |
|    | 4.3.4 Evaluation                                             | 25 |
|    | 4.4 Noise Monitoring                                         | 26 |
|    | 4.4.1 Location Map of Noise Quality Monitoring Points        | 26 |
|    | 4.4.2 Evaluation                                             | 26 |
|    | 4.5 Soil Quality Monitoring                                  | 27 |
|    | 4.5.1 Location Map of Soil Quality Monitoring Points         | 27 |
|    | 4.5.2 Evaluation                                             | 28 |
|    | 4.6 Waste Management Monitoring                              | 28 |
|    | 4.6.1 Generation of Non-Hazardous Waste                      | 28 |
|    | 4.6.2 Generation of Hazardous Waste                          | 30 |
|    | 4.6.3 Waste Management Mitigation Measures                   | 30 |
|    | 4.6.4 Evaluation                                             | 32 |
| 5. | ,                                                            | 33 |
|    | Corporate Social Responsibility                              | 35 |
| 7. | Occupational Health and Safety                               | 35 |
|    | 7.1 Fire Safety Measures                                     | 35 |
|    | 7.2 Occupational Hazard Prevention and First Aid Training    | 36 |
|    | Conclusion and Recommendation                                | 37 |
| 9. | Appendix                                                     | 38 |





#### **Bi-Annual Environmental Monitoring Report**

#### ၁ စီမံကိန်း မိတ်ဆက်

#### ၁.၁ အကျဉ်းချုပ်အစီရင်ခံစာ

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက်သည် မြန်မာနိုင်ငံ၌ကဏ္ဍမျိုးစုံတွင် စီးပွားရေးလုပ်ငန်းအမျိုးမျိုးတို့ကို ပိုင်ဆိုင် လုပ်ကိုင်လည်ပတ်နေသော Shwe Taung Group (STG) ၏ အစိတ်အပိုင်းတစ်ရပ်အနေဖြင့် မြန်မာနိုင်ငံ၊ မန္တလေးတိုင်း ဒေသကြီး၊ သာစည်မြို့နယ်၊ ပြည်ညောင်ကျေးရွာတွင် ၎င်း၏ တည်ရှိနေပြီးသော ရွှံ့ကျောက်ထုတ်လုပ်မှုကို တိုးချဲ့ဆောင်ရွက် လျက်ရှိပါသည်။ စီမံကိန်းသည် ရွှံ့ကျောက်ထုတ်လုပ်မှုကို တစ်နှစ်လျှင် တန် ၉၇,၀၀၀ မှ တန် ၂၉၀,၀၀၀ ထိ တိုးချဲ့ ထုတ်ယူရန် လျာထားပါသည်။ စီမံကိန်းတည်နေရာကို ပုံ ၁ တွင် ဖော်ပြထားပါသည်။

STC သည် ရွှံ့ကျောက်တူးဖော်ထုတ်လုပ်မှုစီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း (EIA) ကို Environmental Resources Management (ERM)- Hong Kong Limited ဖြင့် ဆောင်ရွက်ခဲ့ပါသည်။

ရွံ့ကျောက်လုပ်ကွက် သည် STC ဘိလပ်မြေစက်ရုံ၏ အနောက်ဘက်တွင် တည်ရှိပါသည်။ ရွှံ့ကျောက်လုပ်ကွက်နှင့် STC ဘိလပ်မြေစက်ရုံ အရှေ့ဘက်ရှိ ထုံးကျောက်လုပ်ကွက် နှင့် စစ်ကိုင်းတိုင်းဒေသကြီး၊ ကလေးဝမြို့နယ်ရှိ ကျောက်မီးသွေး သတ္တုလုပ်ကွက်တို့သည် ကုန်ကြမ်းများကို ထောက်ပံ့ပေးလျက် STC ဘိလပ်မြေစက်ရုံထုတ်လုပ်မှုကို အထောက်အပံ့ပြု ဆောင်ရွက်လျက်ရှိပါသည်။

ရွှေတောင် သတ္တုတူးဖော်ထုတ်လုပ်ရေး ကုမ္ပဏီလီမိတက် (STM) သည် ရွှံ့ကျောက်ထုတ်လုပ်မှုလုပ်ငန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာကို ၂၀၂၂ ခုနှစ် နိုဝင်ဘာလ ၁၈ ရက်နေ့တွင် သယံဧာတနှင့်သဘာဝ ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဝန်ကြီးဌာန (MONREC)၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန (ECD) ထံမှ အတည်ပြုချက် ရယူခဲ့သည်။ ရွှံ့ကျောက်ထုတ်ယူခွင့်လိုင်စင်သည် ၂၀၂၂ ခုနှစ် နိုဝင်ဘာ ၁၅ ရက်တွင် သက်တမ်းကုန်ဆုံးခဲ့ပြီး ၂၀၂၃ ခုနှစ် စွန် ၂၈ ရက်တွင် MONREC မှ လိုင်စင်သက်တမ်းတိုးခြင်းကို လက်ခံရရှိခဲ့ပါသည်။ ထို့ကြောင့် ရွှေတောင်သတ္တုတူးဖော်ရေး ကုမ္ပဏီလီမိတက်သည် ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဦးစီးဌာန၏ လုပ်ငန်းစဉ်များ၊ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဥပဒေနှင့် နည်းဥပဒေများ၊ ပတ်ဝန်းကျင် စီမံခန့်ခွဲမှု အစီအစဉ်များကို လိုက်နာဆောင်ရွက်လျက်ရှိပြီး ၂၀၂၄ ခုနှစ်၊ မေလမှ ၂၀၂၄ ခုနှစ်၊ အောက်တိုဘာလအတွက် ပတ်ဝန်းကျင်ဆိုင်ရာ စောင့်ကြပ်ကြည့်ရှုစစ်ဆေးခြင်း အစီရင်ခံစာကို တင်ပြခြင်း ဖြစ်ပါသည်

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



#### 1. Introduction

#### 1.1 Executive Summary

Shwe Taung Cement Company Ltd. (STC), is planning an expansion of the mudstone production at its existing mudstone quarry in Pyi Nyaung Village, Thazi Township in the Mandalay region of Myanmar (the Project). The Project expanded extraction of mudstone from 97,500 tonnes to 290,000 tonnes per year. The location of the Project is shown in Figure 1. STC has commissioned Environmental Resources Management (ERM)-Hong Kong, Limited to undertake the Environmental Impact Assessment (EIA) for the mudstone guarry Project.

The mudstone quarry is located to the west of the STC cement plant (Figure 1). The limestone and mudstone quarries as well as a coal mine in Kalaywa township of Sagaing region are operated by Shwe Taung Mining (STM), subsidiary of Shwe Taung Cement (STC) which supply raw materials exclusively to the STC cement plant. The limestone quarry, mudstone quarry and coal mine of STM are thus considered as associated facilities of the STC cement plant.

Shwe Taung Mining (STM) Co., Ltd. received the approval letter from Environmental Conservation Department (ECD), Ministry of Natural Resources and Environmental Conservation (MONREC) for the project of the Mudstone Quarry EIA report on 18th November 2022. However, the Mudstone Extraction License was expired on 15th November 2022 and received the license renewal from MONREC on 28th June 2023. STM conducted environmental monitoring program in line with Environmental Management Plan and comply Environmental Conservation Law and Rules, the Procedure of ECD and submit this biannual environmental monitoring report for May 2024 to October 2024.

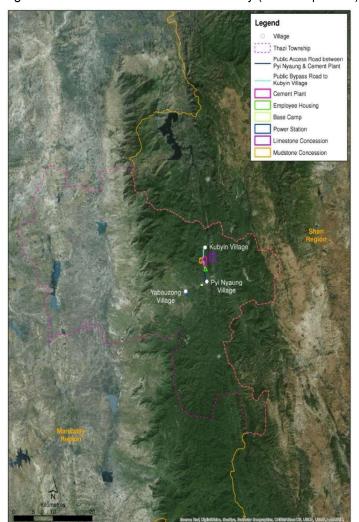



Figure-1: Location of the Mudstone Quarry (Township Level)

#### SHWE TAUNG MINING COMPANY LIMITED



#### **Bi-Annual Environmental Monitoring Report**

#### 1.2 Purpose of Environmental Monitoring

Monitoring is a means of verifying the effectiveness of the management and mitigation measures contained within the management plans listed in STC EIA for Cement Plant.

- 1) The Environmental Engineers from HSE department of Cement Plant shall do the following:
  - Monitor and implement the this ESMP at site;
  - Conduct Environmental monthly inspection checklist audit;
  - Monitor laboratory personnel while conducting their water sampling and testing method;
  - · Assist and monitor the implementation of Waste Management; and
  - Monitor and review the air emission test result for compliance recommendation.
- 2) All inspection checklist audit finding that needs rectification shall be recorded in Environmental and Social tracker and will be assigned by Environmental Manager to concerned department head for rectification.
- All water, effluent and air emission test results will be compiled for review and analyses by Environmental Manager and approved by Head of HSE Department.
- 4) All generated waste according to their classification and final disposal will be entered to waste management matrix for monthly report.
- 5) The Environmental Executive will be implementing and monitoring within the project area, new infestation and according to BAP.

#### 1.3 Health, Social and Environment (HSE) Department

Shwe Taung Cement Co., Ltd. established HSE Department and responsibility of HSE Department are as follows.

- Implementation of Environmental Management Plans of approved EIA report of STM Cement Plant, Comply Rules and Regulations of Environmental Conservation, report Environmental Monitoring
- 2) Supervise third party stakeholders, contractors and other organizations for environmental monitoring program
- 3) Monitoring environmental impact and report the relevant documents
- 4) Promote the ability of employees by conducting knowledge sharing training and awareness on environmental conservation.

#### 2. Environmental Performance Indicators and Monitoring Schedule

Physical, biological and social environmental management components of particular significance have been identified as performance indicators. A comprehensive monitoring plan for each performance indicator has been prepared for all phases of the Project, presented in Table 1.

This includes the parameters to be measured, methods to be utilized, sampling locations, frequency of measurements, detection limits and responsibilities for implementation and supervision.

Impact monitoring will be undertaken during the life of the Project to verify the predicted levels of residual impacts from the Project and the effectiveness of the various management plans and mitigation measures.

Shwe Taung Mining Co., Ltd. will prepare an environmental monitoring report and submit to the Ministry of Natural Resources and Environmental Conservation, MONREC in every six months as per the EIA Procedure requirements.



## SHWE TAUNG MINING CO.,LTD.

#### **Bi-Annual Environmental Monitoring Report**

Table-1: Environmental Monitoring Program

| Project Stage/<br>Component       | Potential<br>Impact                         | Parameters to be Monitored                                                                                                                                                                                                       | Location                                                                                                               | Measurements                                                                        | Frequency      | Responsibility                                                                          |
|-----------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Operation /<br>Mudstone<br>Quarry | Inspection of mitigation compliance         | General compliance with mitigation measures presented in the ESMP.                                                                                                                                                               | Project activity<br>areas                                                                                              | Visual<br>inspection of<br>all active work<br>areas and<br>inspection of<br>records | Weekly         | HSE Team of Appointed Contractor and STM HSSE Department Head and Environmental Manager |
| Operation /<br>Mudstone<br>Quarry | Dust Impacts                                | Dust<br>deposition                                                                                                                                                                                                               | Cement Plant,<br>Ku Pyin and Pyi<br>Nyaung<br>Villages                                                                 | Dust<br>deposition<br>gauge                                                         | Monthly        | STM HSSE<br>Department<br>Head and<br>Environmental<br>Manager                          |
| Operation /<br>Mudstone<br>Quarry | Discharge of treated wastewater and runoff. | Check compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for BOD, COD, TSS, oil and grease, pH, total coliform bacteria, total nitrogen, total phosphorus) | Sampling at: 1. Ku Pyin River, 2. Reservoir, and 3. Pyi Nyaung Village 4. Ye Shin Chaung creek 5. Mudstone runoff area | Standard<br>analytical<br>methods                                                   | Monthly        | STM HSSE<br>Department<br>Head and<br>Environmental<br>Manager                          |
| Operation /<br>Mudstone<br>Quarry | Noise and vibration                         | Check compliance with noise levels specified in Myanmar National Environmental Quality (Emission) Guidelines (2015) for noise.                                                                                                   | Ku Pyin Village<br>and Pyi Nyaung<br>Village                                                                           | Standard<br>analytical<br>methods                                                   | Twice per year | STM HSSE<br>Department<br>Head and<br>Environmental<br>Manager                          |
| Operation /<br>Mudstone<br>Quarry | Soil and sediment                           | As per<br>parameters in<br>Section 5.5                                                                                                                                                                                           | At mudstone<br>quarry run off<br>area                                                                                  | Standard<br>analytical<br>methods                                                   | Twice per year | STM HSSE<br>Department<br>Head and<br>Environmental<br>Manager                          |



#### **Bi-Annual Environmental Monitoring Report**



#### 3. Project Information

#### 3.1 Project Location

The 165-acre mudstone quarry is located west of the STC cement plant (Figure 2). The concession to operate the mudstone quarry is renewed annually with the Forest Department since the concession was initially granted on 31 October 2013. An operating agreement for small-scale production of mineral was signed on 13 December 2017 with No. (1) Mining Enterprise of the Ministry of Natural Resources and Environmental Conservation (MONREC) for a five (5) year term. New medium-scale production of mineral was signed on 28 June 2023 with No. (1) Mining Enterprise of the Ministry of Natural Resources and Environmental Conservation (MONREC).

Figure -2: Location of STM Mudstone Quarry Legend Second Line Transmission Line Planned Route Public Access Road between Pyi Nyaung & Cement Plant Public Bypass Road to Kubyin Village Cement Plant Kubyin Village Employee Housing Base Camp Power Station Limestone Concession Mudstone Concession First Line Facilities Second Line Facilities

7 | Page

#### SHWE TAUNG MINING COMPANY LIMITED



#### **Bi-Annual Environmental Monitoring Report**

#### 3.2 Project Description

Mudstone extraction is currently undertaken by open excavation approximately 500 m above sea level to provide raw material for the existing cement plant. The extracted mudstone is transported by truck to the cement plant, which requires 97,500 tonnes of mudstone per annum to meet the current production capacity. Expansion of the STC Cement Plant with a second kiln will require an additional 262,260 tonnes of mudstone per year bringing the total to 359,760 tonnes of required mudstone per year. The life of the mudstone quarry is estimated at around 55 years based on annual mining volumes of approximately 290,000 tonnes.

All land leased to date by the company is state-owned forest land. With the exception of a small amount of land to accommodate the new transmission line, no new land is required to accommodate the expanded facilities.

#### 4. Environmental Monitoring Program

#### 4.1 Dust Monitoring

Cement industry is a potential anthropogenic source of air pollution. Cement manufacturing is a highly energy intensive process, in other word intensive fuel consumption for clinker making and resulting in emissions. The cement dust produced by cement manufacturing units i.e. calcining, crushing, grinding, packing, loading/unloading are considered one of the most pollutants such as PM10, PM2.5, SO2 and NO2 which affect the surrounding environment.

Stack Emission monitoring from Kiln System is measured with Testo PG-350 Portable Combustion and Emission Analyzer. Ambient Air Quality monitoring is measured with portable HAZ-SCANNER™ EPAS device.

Dust deposition gauges have been installed in Kubyin and Pyi Nyaung Villages and STM monitored dust deposition with 15points at cement plant and limestone quarry, cement plant housing/ accommodation area, Ku Pyin and Pyi Nyaung village.

#### 4.1.1 Monitoring Result for Dust Deposition Monitoring

STM monitored dust deposition with 6 points at cement plant, housing/ accommodation area, Ku Pyin and Pyi Nyaung village. Water suppression was also undertaken on the roads by using the water from sedimentation ponds to mitigate dust emission on surrounding area in plant site, quarries and plant accommodation area. Please refer the Table 3 for dust deposition monitoring results from May 2024 to October 2024.

Table-2: Monitoring Location

| No | Monitoring Location               | Latitude     | Longitude    |
|----|-----------------------------------|--------------|--------------|
| 1  | STM Accommodation (Ingyin Hostel) | 20°51'23.1"N | 96°23'34.7"E |
| 2  | STM Accommodation (55acres)       | 20°50'54.5"N | 96°23'34.8"E |
| 3  | Ku Pyin (Behind Library)          | 20°53'26.9"N | 96°23'24.8"E |
| 4  | Ku Pyin (Primary School)          | 20°53'25.7"N | 96°23'33.6"E |
| 5  | Pyi Nyaung (Near Main Road)       | 20°49'09.5"N | 96°23'50.9"E |
| 6  | Pyi Nyaung (Information Center)   | 20°49'03.9"N | 96°23'40.6"E |

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



Figure-3: Dust Deposition Monitoring



Table-3: Dust Deposition Monitoring results at Workers Accommodation, Ku Pyin and Pyi Nyaung villages from May 2024 to October 2024

| Samplers: Nay Hlaing Oo            | Dust Deposition Monitoring                               |             |             |             |             |             |             |  |  |  |  |
|------------------------------------|----------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|
|                                    | Test Result                                              |             |             |             |             |             |             |  |  |  |  |
| Parameter                          | Australia &<br>New<br>Zealand<br>Guideline<br>(g/m2/Day) | May<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |  |  |
| STM Accommodation (Ingyin Hostel)  |                                                          | 1.35        | 0.36        | 0.42        | 0.35        | 0.35        | 0.32        |  |  |  |  |
| STM Accommodation (55acres)        |                                                          | 0.63        | 0.26        | 0.34        | 0.21        | 0.15        | 0.21        |  |  |  |  |
| Ku Pyin<br>(Behind Library)        | 1.191                                                    | 1.21        | 0.35        | 0.50        | 0.24        | 0.36        | 0.12        |  |  |  |  |
| Ku Pyin<br>(Primary School)        | (g/m2/Day)                                               | 0.80        | 0.36        | Damage      | Damage      | 0.40        | 0,22        |  |  |  |  |
| Pyi Nyaung<br>(Near Main Road)     |                                                          | 0.89        | 0.36        | 0.42        | 0.40        | Damage      | Damage      |  |  |  |  |
| Pyi Nyaung<br>(Information Center) |                                                          | 0.58        | 0.31        | 0.39        | 0.28        | 0.28        | 0.44        |  |  |  |  |

#### 4.2 Ambient Air Monitoring

#### 4.2.1 Monitoring Location

#### 4.2.1.1 Location Map for Ambient Air Monitoring

Ambient air quality monitoring location had been selected by identifying potentially affected with consideration given to the prevailing wind conditions through Operation and Construction activities.



#### **Bi-Annual Environmental Monitoring Report**



Table-4: Monitoring Location

| No | Monitoring Location      | Latitude      | Longitude     |
|----|--------------------------|---------------|---------------|
| 1  | AQ1_Worker Accommodation | 20°50'56.15"N | 96°23'35.97"E |
| 2  | AQ2_Ku Pyin Village      | 20°53'20.47"N | 96°23'27.58"E |
| 3  | AQ3_Pyi Nyaung Village   | 20°49'4.58"N  | 96°23'40.42"E |

Figure-4: Ambient Air Quality Monitoring



Figure-5: Location Map of Ambient Air Monitoring at STM Mudstone



#### SHWE TAUNG MINING COMPANY LIMITED



#### **Bi-Annual Environmental Monitoring Report**

#### 4.2.2 Monitoring Method

The portable HAZ-SCANNER™ EPAS wireless environmental perimeter air station is easily deployed as an ambient air quality monitor to measure and document critical U.S. EPA criteria pollutants including nitrogen dioxide, sulfur dioxide, ozone, carbon dioxide, particulates, VOCs, and more. The EPAS provides direct readings in real time with data logging capabilities.

Web link: https://www.skcinc.com/catalog/pdf/instructions/EPAS%20manual%20v.3.1.pdf

#### 4.2.3 Monitoring Result for Ambient Air Quality Monitoring

Table-5: Summary of Ambient Air Quality Monitoring at Worker Accommodation

| Ambient Air Monitoring by Haz-scanner |                         |                                |             |             |                     |             |             |             |  |  |
|---------------------------------------|-------------------------|--------------------------------|-------------|-------------|---------------------|-------------|-------------|-------------|--|--|
| Machine Name: H                       | Operator: Nay Hlaing Oo |                                |             |             |                     |             |             |             |  |  |
| maonino namon                         | Location                | : Worker A                     | Accommo     | dation      |                     |             |             |             |  |  |
| ECD/ WHO / IFC<br>Guideline           |                         |                                |             |             | Test                | Result      |             |             |  |  |
| Parameter                             | Averaging<br>Period     | Guideline<br>Value in<br>µg/m3 | May<br>2024 | Jun<br>2024 | Ju <b>l</b><br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |
| Nitrogen dioxide                      |                         | 200                            | 82.09       | 34.32       | 43.48               | 75.87       | 71.98       | 40.89       |  |  |
| Ozone                                 | 1                       | 100                            | 61.42       | 23.77       | 26.26               | 45.04       | 47.88       | 24.97       |  |  |
| PM10                                  |                         | 50                             | 28.69       | 13.86       | 14.49               | 8.08        | 12.04       | 17.21       |  |  |
| PM2.5                                 |                         | 25                             | 7.07        | 6.56        | 5.18                | 3.2         | 5.72        | 7.06        |  |  |
| Sulphur dioxide                       | 24 hours                | 20                             | 51.77       | 9.74        | 9.95                | 0.28        | 5.7         | 4.34        |  |  |
| Carbon dioxide                        |                         | -                              | 0           | 0.006       | 20.79               | 0           | 0           | 0.07        |  |  |
| Carbon monoxide                       | ]                       | 10 ppm                         | 0.18        | 0.07        | 0.79                | 0.07        | 0.09        | 0.07        |  |  |

Table-6: Summary of Ambient Air Quality Monitoring at Pyi Nyaung village

| Ambient Air Monitoring by Haz-scanner |                         |                                |             |             |                     |             |             |             |  |  |
|---------------------------------------|-------------------------|--------------------------------|-------------|-------------|---------------------|-------------|-------------|-------------|--|--|
| Machine Name: Haz-scan                | Operator: Nay Hlaing Oo |                                |             |             |                     |             |             |             |  |  |
| maciniic Name. Naz Soan               | Location                | ո։ Pyi Nyau                    | ng Village  | •           |                     |             |             |             |  |  |
| ECD/ WHO / IFC<br>Guideline           |                         |                                |             |             | Test                | Result      |             |             |  |  |
| Parameter                             | Averaging<br>Period     | Guideline<br>Value in<br>µg/m3 | May<br>2024 | Jun<br>2024 | Ju <b>l</b><br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |
| Nitrogen dioxide                      |                         | 200                            | 85.08       | 38.87       | 61.21               | 32.93       | 30.16       | 66.96       |  |  |
| Ozone                                 | 1                       | 100                            | 25.97       | 25.18       | 34.53               | 20.93       | 24.44       | 40.98       |  |  |
| PM10                                  |                         | 50                             | 40.61       | 7.85        | 17.89               | 19.10       | 20.58       | 28.78       |  |  |
| PM2.5                                 |                         | 25                             | 9.58        | 2.74        | 6.37                | 6.3         | 7.95        | 9.21        |  |  |
| Sulphur dioxide                       | 24 hours                | 20                             | 82.32       | 27.30       | 9.35                | 11          | 19.59       | 31.96       |  |  |
| Carbon dioxide                        | ]                       | ppm                            | 0           | 0           | 32,35               | 0.01        | 0.60        | 10.14       |  |  |
| Carbon monoxide                       |                         | 10 ppm                         | 0.24        | 0.11        | 0.10                | 0.13        | 0.30        | 0.14        |  |  |



#### Bi-Annual Environmental Monitoring Report



Table-7: Summary of Ambient Air Quality Monitoring at Ku Pyin village

|                     | Ambient Air Monitoring by Haz-scanner     |          |              |             |             |                         |             |             |  |  |  |  |
|---------------------|-------------------------------------------|----------|--------------|-------------|-------------|-------------------------|-------------|-------------|--|--|--|--|
| Machine Name: Haz-s | Machine Name: Haz-scanner (EPAS)          |          |              |             |             | Operator: Nay Hlaing Oo |             |             |  |  |  |  |
|                     | (=: 7.5                                   | Location | n: Ku Pyin V | 'illage     |             |                         |             |             |  |  |  |  |
|                     |                                           |          | Test F       | Result      |             |                         |             |             |  |  |  |  |
| Parameter           | Averaging Guideline Period Value in µg/m3 |          | May<br>2024  | Jun<br>2024 | Jul<br>2024 | Aug<br>2024             | Sep<br>2024 | Oct<br>2024 |  |  |  |  |
| Nitrogen dioxide    |                                           | 200      | 64.46        | 165.21      | 37.44       | 65.27                   | 71.60       | 41.79       |  |  |  |  |
| Ozone               |                                           | 100      | 50.07        | 71.30       | 24.24       | 34.98                   | 40.65       | 28.28       |  |  |  |  |
| PM10                |                                           | 50       | 25.62        | 55.69       | 8.17        | 11.43                   | 18.44       | 12.63       |  |  |  |  |
| PM2.5               |                                           | 25       | 10.97        | 7.27        | 3.52        | 5.97                    | 9.93        | 4.80        |  |  |  |  |
| Sulphur dioxide     | 24 hours                                  | 20       | 82.32        | 17.81       | 2.98        | 5.44                    | 13.15       | 4.97        |  |  |  |  |
| Carbon dioxide      | arbon dioxide ppm                         |          |              |             | 30.41       | 0                       | 0           | 0.00        |  |  |  |  |
| Carbon monoxide     |                                           | 10 ppm   | 0.18         | 0.10        | 0.07        | 0.05                    | 0.07        | 0.07        |  |  |  |  |

\*Note: This data submitted to ECD on a monthly basis
Ambient air quality results are attached in Appendix-C.

#### 4.2.4 Air Quality Index

The HAZ-SCANNER™, ambient air quality monitoring system, provides a comprehensive data of current air contaminants in a project location. Then, air monitoring data of pollutants is processed into a dimensionless unit called the "Air Quality Index" (AQI); it serves as an information medium for the people to know the air quality health of their location and takes preventative steps accordingly (public participation). As instructed from Meiktila ECD to HSE Department in September 2023, STM has updated this bi-annual monitoring report and verified with Meiktila ECD on the reporting format during last quarter of 2023. Meiktila ECD accepted the updated report during January 2023. Therefore, STM has updated the AQI results in all bi-annual monitoring reports.

The AQI is divided into six categories. Each category corresponds to a different level of health concern. Each category also has a specific color. Thus, the AQI is a beneficial tool for the company, public, stakeholders, and regulators to understand the current state of air quality. The color makes it easy for people to quickly determine whether air quality is reaching unhealthy levels in their communities.

Figure-6: AQI Basics for Ozone and Particle Pollution

| Daily AQI Color | Levels of Concern              | Values of Index | Description of Air Quality                                                                                                                |
|-----------------|--------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Green           | Good                           | 0 to 50         | Air quality is satisfactory, and air pollution poses little or no risk.                                                                   |
| Yellow          | Moderate                       | 51 to 100       | Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution. |
| Orange          | Unhealthy for Sensitive Groups | 101 to 150      | Members of sensitive groups may experience health effects. The general public is less likely to be affected.                              |
| Red             | Unhealthy                      | 151 to 200      | Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects. |
| Purple          | Very Unhealthy                 | 201 to 300      | Health alert: The risk of health effects is increased for everyone.                                                                       |
| Maroon          | Hazardous                      | 301 and higher  | Health warning of emergency conditions: everyone is more likely to be affected.                                                           |





#### **Bi-Annual Environmental Monitoring Report**

Table-8: Summary of AQI at Plant Site from May 2024 to October 2024

|                     | Air Quality Index (AQI) |       |             |                                |             |             |             |             |                                                                                                          |  |  |  |
|---------------------|-------------------------|-------|-------------|--------------------------------|-------------|-------------|-------------|-------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Machine Na          | ıme: Haz-scaı           | nnor  | Operat      | Operator: Nay Hlaing Oo        |             |             |             |             |                                                                                                          |  |  |  |
| (EPAS)              |                         |       | Location    | Location: Worker Accommodation |             |             |             |             |                                                                                                          |  |  |  |
|                     |                         |       |             | AQI Results                    |             |             |             |             |                                                                                                          |  |  |  |
| Parameter           | Averaging<br>Period     | Unit  | May<br>2024 | Jun<br>2024                    | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 | Sensitive Group                                                                                          |  |  |  |
| PM <sub>10</sub>    | 24 hour                 | ug/m3 | 26          | 12                             | 13          | 7           | 11          | 16          | People with respiratory disease are the group most at risk.                                              |  |  |  |
| PM <sub>2.5</sub>   | 24 hour                 | ug/m3 | 39          | 36                             | 28          | 18          | 32          | 39          | People with respiratory or<br>heart disease, the elderly<br>and children are the groups<br>most at risk. |  |  |  |
| Carbon<br>monoxide  | 8 hour                  | ppm   | 1           | 0                              | 0           | 0           | 0           | 0           | People with heart disease are the group most at risk.                                                    |  |  |  |
| Ozone               | 8 hour                  | ppb   | 28          | 11                             | 16          | 21          | 22          | 11          | Children and people with asthma are the groups most at risk.                                             |  |  |  |
| Nitrogen<br>dioxide | 1 hour                  | ppb   | 41          | 17                             | 22          | 38          | 36          | 20          | People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk. |  |  |  |
| Sulphur<br>dioxide  | 1 hour                  | ppb   | 10          | 4                              | 1           | 0           | 3           | 1           | People with asthma are the group most at risk.                                                           |  |  |  |

Table-9: Summary of AQI at Pyi Nyaung Village May 2024 to October 2024

|                             | Air Quality Index (AQI) |       |             |                              |             |             |             |             |                                                                                                          |  |  |  |
|-----------------------------|-------------------------|-------|-------------|------------------------------|-------------|-------------|-------------|-------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Machine Na                  | ıme: Haz-scaı           | nnor  | Operat      | Operator: Nay Hlaing Oo      |             |             |             |             |                                                                                                          |  |  |  |
| (EPAS)                      |                         |       | Location    | Location: Pyi Nyaung Village |             |             |             |             |                                                                                                          |  |  |  |
|                             |                         |       |             | AQI Results                  |             |             |             |             |                                                                                                          |  |  |  |
| Parameter                   | Averaging<br>Period     | Unit  | May<br>2024 | Jun<br>2024                  | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 | Sensitive Group                                                                                          |  |  |  |
| PM <sub>10</sub>            | 24 hour                 | ug/m3 | 37          | 6                            | 16          | 18          | 19          | 26          | People with respiratory disease are the group most at risk.                                              |  |  |  |
| PM <sub>2.5</sub>           | 24 hour                 | ug/m3 | 52          | 15                           | 35          | 35          | 44          | 51          | People with respiratory or<br>heart disease, the elderly and<br>children are the groups most<br>at risk. |  |  |  |
| Carbon<br>monoxide          | 8 hour                  | ppm   | 2           | 1                            | 0           | 1           | 3           | 1           | People with heart disease are the group most at risk.                                                    |  |  |  |
| Ozone                       | 8 hour                  | ppb   | 12          | 12                           | 15          | 9           | 11          | 19          | Children and people with asthma are the groups most at risk.                                             |  |  |  |
| Nitrogen<br>dioxide         | 1 hour                  | ppb   | 42          | 19                           | 30          | 16          | 15          | 33          | People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk. |  |  |  |
| Su <b>l</b> phur<br>dioxide | 1 hour                  | ppb   | 44          | 14                           | 4           | 6           | 10          | 17          | People with asthma are the group most at risk.                                                           |  |  |  |

#### SHWE TAUNG MINING COMPANY LIMITED

## Bi-Annual Environmental Monitoring Report SHWE TA

SHWE TAUNG MINING CO.,LTD.

Table-10: Summary of AQI at Ku Pyin Village May 2024 to October 2024

|                             | Air Quality Index (AQI)          |       |             |                           |                    |             |             |             |                                                                                                          |  |  |
|-----------------------------|----------------------------------|-------|-------------|---------------------------|--------------------|-------------|-------------|-------------|----------------------------------------------------------------------------------------------------------|--|--|
| Machine No                  | mo: Uaz coai                     | nnor  | Operat      | or: Nay I                 | H <b>l</b> aing Oo | ı           |             |             |                                                                                                          |  |  |
| (EPAS)                      | Machine Name: Haz-scanner (EPAS) |       | Location    | Location: Ku Pyin Village |                    |             |             |             |                                                                                                          |  |  |
| ` ′                         | · ·                              |       |             |                           | AQI Results        |             |             |             |                                                                                                          |  |  |
| Parameter                   | Averaging<br>Period              | Unit  | May<br>2024 | Jun<br>2024               | Jul<br>2024        | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 | Sensitive Group                                                                                          |  |  |
| PM <sub>10</sub>            | 24 hour                          | ug/m3 | 23          | 51                        | 7                  | 10          | 17          | 11          | People with respiratory disease are the group most at risk.                                              |  |  |
| PM <sub>2.5</sub>           | 24 hour                          | ug/m3 | 54          | 40                        | 19                 | 33          | 52          | 27          | People with respiratory or heart disease, the elderly and children are the groups most at risk.          |  |  |
| Carbon<br>monoxide          | 8 hour                           | ppm   | 1           | 1                         | 0                  | 0           | 0           | 0           | People with heart disease are the group most at risk.                                                    |  |  |
| Ozone                       | 8 hour                           | ppb   | 27          | 33                        | 10                 | 16          | 19          | 13          | Children and people with<br>asthma are the groups most<br>at risk.                                       |  |  |
| Nitrogen<br>dioxide         | 1 hour                           | ppb   | 32          | 86                        | 18                 | 32          | 36          | 21          | People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk. |  |  |
| Su <b>l</b> phur<br>dioxide | 1 hour                           | ppb   | 40          | 9                         | 1                  | 3           | 7           | 1           | People with asthma are the group most at risk.                                                           |  |  |

#### 4.2.5 Evaluation

Ambient Air monitoring was monthly tested at location of Sensitive Air Respecters such as Cement Plant Accommodation area and nearby villages which are Pyi Nyaung and Ku Pyin. All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015), except higher results of Sulphur Dioxide results. STM has noted that there was a lot of forest bush fires set up by some villagers to clean the bushes, nearly every day.







STM has investigated the reason of  $SO_2$  result more than Myanmar National Environmental Quality (Emission) Guidelines (2015) as STC uses the low Sulphur content in coal that used as fuel for cement production as stated in STC Cement Plant EIA report. STM has analyzed the monitoring results from the portable HAZ-SCANNER<sup>TM</sup> EPAS device and found out that  $SO_2$  results were a lot higher during day time and less value at night time. This indicate that the plant is operating 24hours and it couldn't be less during night time.

AQI across the globe considers the number of pollutants (most of the developed countries and some developing countries considers PM 2.5 to measure the overall status of air quality being monitored), averaging time for which pollutants are measured, calculation method to compute air quality indices for each pollutant, calculation mode to aggregate the overall index, scale of an index, categories, color coding

#### SHWE TAUNG MINING COMPANY LIMITED

## SHWE TAUNG

#### **Bi-Annual Environmental Monitoring Report**

scheme, and related descriptive terms of the pollutants. There are many air quality index models to represent air quality level in the world. STM selected to assess ambient air quality results in Pyi Nyaung area based on AirNow, which is a partnership with the U.S. Environmental Protection Agency (EPA), color-coded index standards.

By analyzing all the AQI results, it is noted that PM 2.5 values are majorly impacted by human activities (forest firing & open burning, etc.) from surrounding environment. STM will raise the public awareness among Mudstone Quarry community and also disclosed these air quality monitoring results and AQI results at Pyi Nyaung Information Center and Ku Pyin library according to STM Stakeholder Engagement Plan.

STM engaged 3<sup>rd</sup> party Environmental consultant as auditor and the auditor advised that this was the case as forest fires in the hills surrounding the plant were numerous at the time of the audit and consistent haze was present over the general area. The Auditor considered that the forest fires are contributing to elevated particulate readings being recorded by STM and elevated readings cannot be solely apportioned to emissions from Mudstone Quarry and associated facilities.

Therefore, STM was looking other factors that can be impacting on SO<sub>2</sub> results and found out that it was related to emission of mobile vehicles that were higher SO<sub>2</sub> than Kiln emission by using Testo PG-350 Portable Combustion and Emission Analyzer at STC Apache cement plant. There were a lot of heavy machineries and trailer trucks movement during day time and only trailer trucks movement during night time. So STM has raised awareness among the vehicle drivers to stop when they are parking or waiting, with sticker campaign "Turn Off Your Engine While Waiting or Parked" at Apache Cement plant.

These were a notable deterioration in regional air quality was found at Pyi Nyaung area. Moreover, cold air during the cold season can't hold as much moisture, and so the air is usually drier during winter. These habits were also noted on contributing factors of higher results of  $PM_{10}$  and  $PM_{2.5}$ .

Moreover, there were regular device servicing and maintenance with NANOVA, authorized supplier of Myanmar of EPAS device, in January and March 2020. STM noted the Haz-scanner EPAS SO2 sensor has some issue as the ambient air quality monitoring result of SO2 was complied with Myanmar National Environmental Quality (Emission) Guidelines (2015) after NANOVA, the local authorized support of Myanmar.

Carried out sensor checking, testing using zeroing filter and internal tube cleaning by supplier 3 times due to sensor error reading of Haz-scanner devices.

Water suppression are also undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix A).

Moreover, to safeguard occupational health, STM collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

Figure-8: Occupational Health Care Records by Social Security Board









#### **Bi-Annual Environmental Monitoring Report**



#### 4.2.6 Air Quality Mitigation Measures

Table-11: Air Quality Management

| Affected<br>Aspect | Mitigation Measures                                                                                                                 | Action Taken                                                                                                                                           | Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Water suppression should be used on<br>unpaved roads and work areas in dry and<br>windy conditions;                                 | Water suppression are undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix A). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Drop heights during loading and transfer of<br>materials should be minimized to no more<br>than 0.5 m and shielded against the wind | Completed and installed for line 1 and line 2 design                                                                                                   | Make   A ready of the early to the discharge   1 - In the final change as  1 - In the |
|                    | Storage of dusty materials (i.e. stockpiles) should be enclosed or operated with efficient dust suppression measures;               | Implemented                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Stockpile heights should be kept to a<br>minimum of no more than 3 m                                                                | Implemented                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Air<br>Quality     | Regular cleaning of conveyor belt systems;                                                                                          | Included in PME scope (Regular<br>Maintenance of bag filter and electrostatic<br>precipitator, see in Appendix)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Crushed and blended raw materials should<br>be stored in covered or closed bays;                                                    | Additional silo constructed in line 2                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Pulverized coal should be stored in silos or<br>closed storage;                                                                     | Implemented                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | <ul> <li>Clinker should be stored in covered or<br/>closed bays or silos with dust extractions;</li> </ul>                          | Implemented                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



# SHWE TAUNG MINING CO.,LTD.

#### **Bi-Annual Environmental Monitoring Report**

| Desition wheat are interested to be a control of the control of th | Included in DMC and DDD scene /Damiler                                                                                                       | Lag 1 to combine the second Personal continuous PSF-4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| <ul> <li>Routine plant maintenance to keep air leaks<br/>and spills to a minimum;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Included in PME and PRD scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)                            |                                                       |
| <ul> <li>Material handling processes including<br/>crushing operations, raw milling and clinker<br/>grinding should be undertaken in enclosed<br/>systems maintained under negative<br/>pressure by exhaust fans. Dust should be<br/>removed using cyclones and bag filters; and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Equipped with cyclones and bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)                   |                                                       |
| <ul> <li>Implementation of automatic bag filling and<br/>handling systems;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Implemented both line 1 and line 2                                                                                                           |                                                       |
| <ul> <li>Use of electrostatic precipitators (ESPs) or<br/>fabric filter systems to collect and control<br/>fine suspended particulate emissions in the<br/>kiln gases;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Installed (Regular Maintenance of bag filter<br>and electrostatic precipitator, see in<br>Appendix)                                          |                                                       |
| <ul> <li>Use of cyclones to separate larger<br/>particulates of cooler gases followed by<br/>fabric filters and finally</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equipped with cyclones and bag filters line 1 and line 2 (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix) |                                                       |
| Mild dust should be captured and recycled<br>using fabric filters within the mill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equipped with bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)                                |                                                       |

#### 4.3 Water Quality Monitoring

Monitoring of water quality regularly is quite necessary for the assessment of water quality for beneficial purposes. Operation is dry process and do not generate wastewater. Sanitary wastewater from office and household are discharged to bio tank and treated wastewater are monitored in compliance with the NEQEG on BOD, COD, pH, SS, oil & grease, TN & TP and as per WHO Drinking water guidelines.

#### 4.3.1 Monitoring Location

Figure 8, 9, 10 and 11 shows the location of Water Quality sampling point monthly on WHO Drinking Water Guidelines and IFC Effluent Water Guidelines for Water Quality Monitoring (e.g. pH, Color, Turbidity, Iron, BOD, COD etc.) are the parameters for measurement.

Table-12: Sampling location

| No | Sampling Location    | Latitude      | Longitude     |
|----|----------------------|---------------|---------------|
| 1  | Ku Pyin Stream       | 20°53'22.92"N | 96°23'23.92"E |
| 2  | Pyi Nyaung Stream    | 20°49'23.18"N | 96°23'46.25"E |
| 3  | Ye Shin Stream       | 20°50'24.08"N | 96°23'26.81"E |
| 4  | Supply Water         | 20°51'35.3"N  | 96°23'37.7"E  |
| 5  | Sedimentation Pond 5 | 20°52'10.60"N | 96°23'16.67"E |
| 6  | Sedimentation Pond 6 | 20°51'47.52"N | 96°23'25.02"E |



#### **Bi-Annual Environmental Monitoring Report**



#### 4.3.1.1 Location Map of Water Quality Sampling Points

Figure-9: Overview Map of sampling point for Stream Water and Supply Water Quality

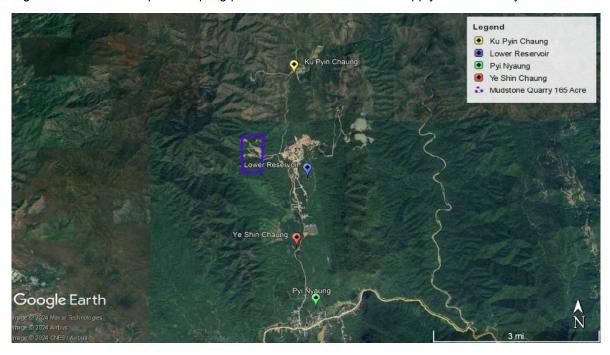



Figure-10: Overview Map of sampling point for Sedimentation Pond Water Quality



#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



Figure-11: Water Quality Sampling Record



#### 4.3.2 Monitoring Result for Water Quality

Table-13: Ku Pyin Stream Water Quality Monitoring Result

|                     | Ku Pyin Stream Water Supply Water Analysis |                   |                     |             |             |             |             |             |             |  |  |  |
|---------------------|--------------------------------------------|-------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| ITEM                | WHO<br>Drinking<br>Water<br>Guideline      | EQEG<br>Guideline | Baseline<br>Results | May<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |  |
| рН                  | 6.5 – 8.5                                  | 6 - 9             | 6.3                 |             | 7.9         | 8.3         | 8.5         | 8.5         | 8.6         |  |  |  |
| Color               | 15 PCU                                     | -                 | -                   |             | 0           | 65          | 35          | 15          | 10          |  |  |  |
| Turbidity           | 5 NTU                                      | -                 | -                   |             | 0.71        | 21.6        | 15.3        | 3.89        | 0.44        |  |  |  |
| Calcium<br>hardness | 500 mg/l                                   | -                 | -                   | No          | 270         | 225         | 180         | 246         | 200         |  |  |  |
| Chloride (CI)       | 250 mg/l                                   | -                 | -                   | Water       | 4           | 6           | 2           | 2           | 1           |  |  |  |
| Sulphate<br>(SO4)   | 200 mg/l                                   | -                 | -                   |             | 20          | 20          | 10          | 10          | 10          |  |  |  |
| TSS                 | 50 mg/l                                    | 50 mg/l           | 23                  |             | 3           | 67          | 41          | 13          | 3           |  |  |  |
| Nitrate             | 50 mg/l                                    | -                 | -                   |             | 4           | -           | 7           | 5.9         | 16          |  |  |  |

Table-14: Pyi Nyaung Stream Water Quality Monitoring Result

| Pyi Nyaung Stream Water Supply Water Analysis (Near Pyi Nyaung) |                                 |                     |             |             |             |                            |             |  |  |  |
|-----------------------------------------------------------------|---------------------------------|---------------------|-------------|-------------|-------------|----------------------------|-------------|--|--|--|
| ITEM                                                            | WHO Drinking<br>Water Guideline | <b>M</b> ay<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024                | Oct<br>2024 |  |  |  |
| pH                                                              | 6.5 - 8.5                       |                     | 7.8         | 7.9         | 8.2         |                            | 8.3         |  |  |  |
| Color                                                           | 15 PCU                          |                     | 20          | 25          | 5           | Cannot<br>collect<br>water | 10          |  |  |  |
| Turbidity                                                       | 5 NTU                           |                     | 1.11        | 1.36        | 4.36        |                            | 7.21        |  |  |  |
| Calcium hardness                                                | 500 mg/l                        | No Water            | 207         | 195         | 150         | sample                     | 168         |  |  |  |
| Chloride (CI)                                                   | 250 mg/l                        |                     | 4           | 6           | 5           | because                    | 2           |  |  |  |
| Sulphate (SO4)                                                  | 200 mg/l                        |                     | 20          | 20          | 10          | of the                     | 10          |  |  |  |
| TSS                                                             | 50 mg/l                         |                     | 10          | 8           | 17          | issues                     | 22          |  |  |  |
| Nitrate                                                         | 50 mg/l                         |                     | 9.1         | -           | 5.2         |                            | 8.4         |  |  |  |



## SHWE TAUNG MINING CO.,LTD.

#### **Bi-Annual Environmental Monitoring Report**

Table-15: Ye Shin Stream Water Quality Monitoring Result

|                  | Ye Shin Stream Supply Water Analysis |             |             |             |             |             |             |  |  |  |  |
|------------------|--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|
| ITEM             | WHO Drinking Water<br>Guideline      | May<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |  |  |
| рH               | 6.5 - 8.5                            |             |             | 8.3         | 8.4         | 8.4         | 8.3         |  |  |  |  |
| Color            | 15 PCU                               |             |             | 65          | 10          | 40          | 25          |  |  |  |  |
| Turbidity        | 5 NTU                                | ]           |             | 12.9        | 3.73        | 18.2        | 5.31        |  |  |  |  |
| Calcium hardness | 500 mg/l                             | No water    | No          | 147         | 78          | 90          | 129         |  |  |  |  |
| Chloride (CI)    | 250 mg/l                             | NO Water    | Water       | 3           | 2           | 2           | 1           |  |  |  |  |
| Sulphate (SO4)   | 200 mg/l                             | 1           |             | 20          | 10          | 10          | 10          |  |  |  |  |
| TSS              | 50 mg/l                              | 1           |             | 36          | 11          | 46          | 13          |  |  |  |  |
| Nitrate          | 50 mg/l                              |             |             | -           | 10.4        | -           | 7.8         |  |  |  |  |

Table-16: Lower Reservoir Water Quality Monitoring Result

|                     | Lower Reservoir Supply Water Analysis |                       |                     |             |             |             |             |             |             |  |  |
|---------------------|---------------------------------------|-----------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|
| ITEM                | WHO Drinking<br>Water<br>Guideline    | EQEG<br>Guide<br>line | Baseline<br>Results | May<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |  |  |
| pН                  | 6.5 <b>–</b> 8.5                      | 6 - 9                 | 7.6                 | 8.3         | 8.6         | 8.5         | 8.8         | 8.4         | 8.5         |  |  |
| Color               | 15 PCU                                | -                     | -                   | 60          | 100         | 40          | 15          | 20          | 25          |  |  |
| Turbidity           | 5 NTU                                 | -                     | -                   | 9,83        | 10.2        | 7.74        | 7.93        | 16.9        | 5.49        |  |  |
| Calcium<br>hardness | 500 mg/l                              | -                     | -                   | 90          | 135         | 120         | 129         | 99          | 126         |  |  |
| Chloride (CI)       | 250 mg/l                              | -                     | -                   | 5           | 5           | 5           | 3           | 3           | 3           |  |  |
| Sulphate (SO4)      | 200 mg/l                              | -                     | -                   | 20          | 20          | 20          | 20          | 10          | 10          |  |  |
| TSS                 | 50 mg/l                               | 50 mg/l               | 11                  | 40          | 37          | 37          | 34          | 41          | 22          |  |  |
| Nitrate             | 50 mg/l                               | -                     | =                   | 4.8         | 26          | -           | 7.6         | 6           | 7           |  |  |

Lower reservoir supply water test results from external laboratories are attached in Appendix-(B-5).

Table-17: Sedimentation Pond-5 Surface Water Test Result

|                                   | Sedimentation Pond 5 Surface Water Test Result |                       |                     |             |             |             |             |             |             |  |
|-----------------------------------|------------------------------------------------|-----------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
| Parameters                        | IFC Waste<br>Water<br>Guideline                | EQEG<br>Guide<br>line | Baseline<br>Results | May<br>2024 | Dec<br>2023 | Jan<br>2024 | Feb<br>2024 | Mar<br>2024 | Apr<br>2024 |  |
| рН                                | 6~9                                            | 6 ~ 9                 | 7.6                 | 7.7         | 8           | 8.3         | 8.1         | 8.1         | 8.2         |  |
| Chemical Oxygen<br>Demand (COD)   | 0~125<br>mg/l                                  | 125<br>mg/l           | 41.5                | 68          | 96          | 93          | 60          | 55          | 12          |  |
| Biological Oxygen<br>Demand (BOD) | 0~30 mg/l                                      | 30 mg/l               | 6.5                 | 43          | 13          | 26          | -           | -           |             |  |
| Total Suspended Solid (TSS)       | Max 50<br>mg/l                                 | 50 mg/l               | 215.5               | 130         | 99          | 87          | 48          | 28          | 18          |  |
| Total Nitrogen                    | 10 mg/l                                        | 10 mg/l               | 1.7                 | ND          | 1.65        | -           | 2.05        | 2.75        | 1.78        |  |
| Total Nitrate                     | 44.29 mg/l                                     | -                     | -                   | ND          | 7.3         | -           | 0.3         | 12.2        | 7.9         |  |
| Total Phosphorous                 | 2 mg/ <b>l</b>                                 | 2                     | 0.06                | 0.2         | 0.2         | 0.2         | 0.3         | 0.3         | 0.1         |  |
| Oil and grease                    | 10 mg/l                                        | 10 mg/l               | DL                  | ND          | ND          | ND          | ND          | ND          | ND          |  |
| Total Coliform<br>Bacteria        | -                                              | 100 ml                | 45.50               | -           | -           | -           | -           | -           | -           |  |





#### **Bi-Annual Environmental Monitoring Report**

Table-18: Sedimentation Pond 6 Surface Water Test Result

|                                   | Sedim                           | nentation P           | ond 6 Surfa         | ce Water    | Test Res    | ult         |             |             |             |
|-----------------------------------|---------------------------------|-----------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Parameters                        | IFC Waste<br>Water<br>Guideline | EQEG<br>Guide<br>Iine | Baseline<br>Results | May<br>2024 | Jun<br>2024 | Jul<br>2024 | Aug<br>2024 | Sep<br>2024 | Oct<br>2024 |
| рН                                | 6~9                             | 6~9                   | 5.6                 | 8.7         | 8.4         | 8.5         | 9.5         | 10.1        | 10          |
| Chemical Oxygen<br>Demand (COD)   | 0~125<br>mg/l                   | 125<br>mg/ <b>l</b>   | 2.5                 | 119         | 37          | 36          | 55          | 45          | 5           |
| Biological Oxygen<br>Demand (BOD) | 0~30 mg/l                       | 30 mg/l               | 1                   | 78          | 16          | 15          | -           | -           | -           |
| Total Suspended Solid (TSS)       | Max 50<br>mg/l                  | 50 mg/l               | 9                   | 72          | 38          | 39          | 43          | 255         | 139         |
| Total Nitrogen                    | 10 mg/l                         | 10 mg/l               | 0.3                 | 0           | 0.69        | -           | 1.31        | 9.6         | 2.37        |
| Total Nitrate                     | 44.29 mg/l                      | -                     | -                   | 0           | 3.1         | -           | 5.8         | 2.37        | 10.5        |
| Total Phosphorous                 | 2 mg/l                          | 2                     | 0.01                | 0.2         | 0.2         | 0.3         | 0.3         | 0.2         | 0.0         |
| Oil and grease                    | 10 mg/l                         | 10 mg/l               | DL                  | ND          | ND          | ND          | -           | -           | -           |
| Total Coliform<br>Bacteria        | -                               | 100 m <b>i</b>        | ND                  | -           | -           | -           | -           | -           | -           |

<sup>\*</sup> Not for drinking water. No effect for Health & Environment.

Laboratory results for water quality are attached in Appendix-B.

<sup>\*</sup> Total suspended solid (TSS) values are above the guidelines due to lower water flow rates in the winter and summer seasons.

<sup>\*</sup> STM has tested the surface water quality from the sedimentation ponds for using water with water truck to suppress dust around the cement plant and quarry sites.



#### **Bi-Annual Environmental Monitoring Report**



#### 4.3.3 Water Quality Mitigation Measures

Table-19: Water Quality Management

| Affected<br>Aspect          | Mitigation Measures                                                                                                                                                                                                                                                                          | Action Taken                                                                         | Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface<br>Water<br>Quality | Implementing storm water management practices to manage the flow of storm-water, prevent uncontrolled migration and minimize erosion and sediment transport from project facilities and disturbed areas.     Construction of a dedicated drainage network to intercept and diversion runoff; | Constructed stormwater drains around the cement plant channel to sedimentation ponds | Software vester flow  Calciument and  Calciument area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Divert runoff from the mudstone<br>quarry to an appropriately sized<br>and maintained sedimentation<br>pond to allow adequate retention<br>time for suspended solids to settle;                                                                                                              | Constructed sedimentation pond dual stage.                                           | Sedmentation pord from storm water rusoff to allow adequate relieration time for suspended acides to set to before othering vorticards area.  Location Map of Sedimentation Pond at STC Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                                                                                                                              |                                                                                      | Layout Plan for Stormwater Diversion  Area A and Rea  By Read Rea  By |
|                             | Divert runoff from the limestone<br>quarry to the wetland created by<br>STM via a weir to remove<br>suspended solids before entering<br>the wetland;                                                                                                                                         | Constructed sedimentation pond dual stage.                                           | Figure 33's Description for each known rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             | Baffles or other measures to<br>reduce the velocity of runoff<br>downhill slopes should be installed<br>to minimize scouring;                                                                                                                                                                | Visual monitoring by MNE                                                             | Coegefunts  Figure (1) Zoning for slope protection measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



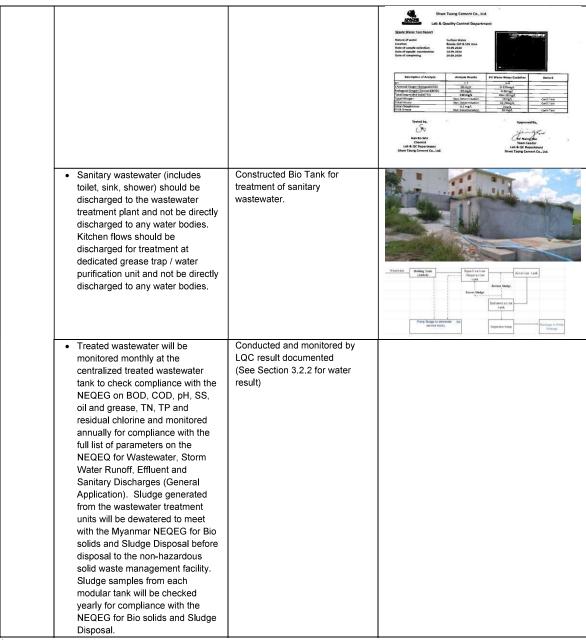


#### **Bi-Annual Environmental Monitoring Report**

| Exposed areas and ove<br>dumps should be revege<br>quickly as possible.                                                                                                                                                                                                                               |                                                                                                 | ring monsoon                            |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|
| STM will prepare and in<br>Storm water Manageme<br>considering the mitigation<br>committed above.                                                                                                                                                                                                     | ent Plan construction on Line 2 area. Line constructed since                                    | progress for<br>e 1 area was<br>e 2014. | Google Earth water Raw, cameer plant and limetice miles area |
| All areas used to store a handle coal, laterite and should be paved and su by perimeter drains. Fo storage area, it should be                                                                                                                                                                         | limestone rrounded r the coal                                                                   |                                         | andling: Coal Stockpile Storage @ 501 Area                   |
| Runoff from the laterite limestone staging areas diverted to retention por may be used for greenir suppression or discharg onsite reservoir.                                                                                                                                                          | shall be dual stage and r gardening and d gardening and d                                       | euse for ust control.                   | Staging Stockpile: Double Stage Sedimentation Pond           |
| For the coal storage are has agreed to cover this Water from the roof will diverted via storm water retention ponds and ma for greening, dust suppr discharged to the onsite Runoff collected by the drains (small volume) w covered coal storage ar diverted for treatment at wastewater treatment p | triple stage.  be drains to y be used ession or reservoir. interceptor ithin the ea will be the | limentation pond                        | riple Stage Sedimentation Pond                               |






#### **Bi-Annual Environmental Monitoring Report**

| Discharges into the reservoir and any runoff discharged to surface streams should be monitored monthly for compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for TSS, oil and grease, pH). | Conducted and monitored by LQC result documented (See in 4.3.2 water result)                  | Shree Taung Coment Co., Ltd.  Lab & Quality Control Department  Water Confirst Test Report  Lower Reprint/Non highly lives  Location  Stand of stangle collection  Date of stangle collection  Date of stangle collection  Date of stangle collection  Stand Date of stangle collection  Date of stangle collection  Stand Date of stangle collection  Date of stangle collection  Stand Date of Stangle Collection  Stangle Collection  Stand Date of Stangle Collection  Line & Date Collection  Show Taung Collection  Show Tau |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lightning protection should be installed at all areas used to store bulk fuel and other flammables;                                                                                                                                                               | Installed at fuel depot.                                                                      | Constructed barried handstand with containment for 110% of the volume of stored has and equipped with all water apparatus Installed lightning protection post.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The fuel storage facility should be constructed on bunded hardstand with containment sufficient for 110% of the volume of the single largest tank;  The fuel storage facility should be constructed on bunded hardstand.                                          | Equipped.                                                                                     | Conducted bunded handstated with continement for TEO's of the solution of stored faul and repayaged with cell-water separator. Installable lightning protection pout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Discharges from this bunded area<br>should pass through an oil-water<br>separator;                                                                                                                                                                                | Installed                                                                                     | Constructed bunded hardstand with continement for 110% of the volume of shored fuel and repurpose with oil-water separation / installing protocolon posit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant)                                                                                                                   | Approved and implemented                                                                      | SPILL CONTROL & RESPONSE TRAINING  Develop training materials for spill control reasonse.  Conducted training and drill for Spill Response Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                   |                                                                                               | Sealor Each MADD  Text history they diversify the sealor of the sealor o |
| Discharges from the coal staging<br>area should be monitored monthly<br>for compliance with Myanmar<br>National Environmental Quality<br>(Emissions) Guidelines for site<br>runoff and wastewater discharges<br>(for TSS, oil and grease, pH).                    | Conducted and monitored by LQC result documented (See in Section 4.3.2 for water test result) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## SHWE TAUNG MINING CO.,LTD.

#### **Bi-Annual Environmental Monitoring Report**



\*Data from Environment shared google drive

Notice: Presently all the discharge from bund wall areas directly channel to sedimentation pond.

#### 4.3.4 Evaluation

The establishment of sewage and sanitary waste management and storm water management is executing in plant site. Since the dry process is used for the cement production and the second line is also adopted a similar dry process as the first line, do not generate wastewater from first line and second line production. Discharge sanitary wastewater from plant office and household accommodation are diverted for treatment at the wastewater treatment plant. Ku Pyin Stream water and reservoir water are monitored monthly in compliance with WHO drinking water guideline and NEQEG guideline (General Application guideline). Moreover, surface water from sedimentation ponds are monitored monthly in compliance with the NEQEG guideline and compared with baseline results. Sometimes, total suspended solid (TSS) values are above the guidelines due to lower water flow rates in the winter and summer seasons.

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



#### 4.4 **Noise Monitoring**

The nearest representative noise sensitive receptors (NSRs) that may potentially affect by the noise impact due to the Project are identified as Pyi Nyaung and Ku Pyin villages. STM operate noise monitoring twice a year in accordance with Mudstone Environmental Monitoring Plan and results are shown in Table 20 below:

#### **Location Map of Noise Quality Monitoring Points**

Figure-12: Noise Quality Sampling Points



Table-20: Noise Monitoring Results in Pyi Nyaung and Ku Pyin villages

| Noise Monitoring Results |                           |                                |                                 |           |             |                          |                           |        |  |
|--------------------------|---------------------------|--------------------------------|---------------------------------|-----------|-------------|--------------------------|---------------------------|--------|--|
| Machine Name: KIMO       | Machine Name: KIMO LDB 23 |                                |                                 |           |             |                          | Operator: Nay Hlaing Oo   |        |  |
|                          |                           | ECD/\                          | NHO / IFC                       | Guideline |             | Test                     | Result                    |        |  |
| Location                 | Noise Level               | and IFC<br>I Guideline,<br>(A) | Baseline Noise<br>Levels, dB(A) |           | Receptor    | Day (07:00 – 22:00 hrs), | Night (22:00 – 07:00 hrs) | Remark |  |
|                          | Day                       | Night                          | Day                             | Night     |             | dB (A)                   | dB (A)                    |        |  |
| Pyi Nyaung Village       | 55                        | 45                             | -                               | -         | Residential | 80.2                     | 63.4                      |        |  |
| Ku Pyin Village          | 55                        | 45                             | -                               | -         | Residential | 53.9                     | 52.5                      |        |  |

#### 4.4.2 Evaluation

The noise level assessment for Pyi Nyaung Village reveals significant exceedance of NEQEG and IFC guidelines, with measured daytime levels at 80.2 dB(A) and nighttime levels at 63.4 dB(A). The primary cause of this excess noise is not related to Shwe Taung's cement plant or quarry operations but rather due to the village's proximity to the Meikhtila-Taunggyi Highway Road, which experiences heavy vehicular traffic, particularly during nighttime hours. This high traffic volume poses a serious concern for community health and well-being, given its continuous nature.

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



#### 4.5 Soil Quality Monitoring

Soil quality monitoring was undertaken in April 2023 in Ku Pyin village. The locations for soil sampling are provided in Figure 12. Two soil samples were taken at each sampling location These samples were sent to the laboratory analyzed by Department of Agriculture (Land Use), Ministry of Agriculture, Livestock and Irrigation (MOALI). Parameters measured included Moisture, pH, Electrical Conductivity, Organic Carbon, Humus, Total Nitrogen, Ca<sup>2+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, P, K<sub>2</sub>O, Water Soluble SO<sub>4</sub><sup>2-</sup>. Soil quality monitoring results for laboratory analyzed parameters are shown in Table 5.

#### 4.5.1 Location Map of Soil Quality Monitoring Points

Figure-13: Soil Quality Sampling Points

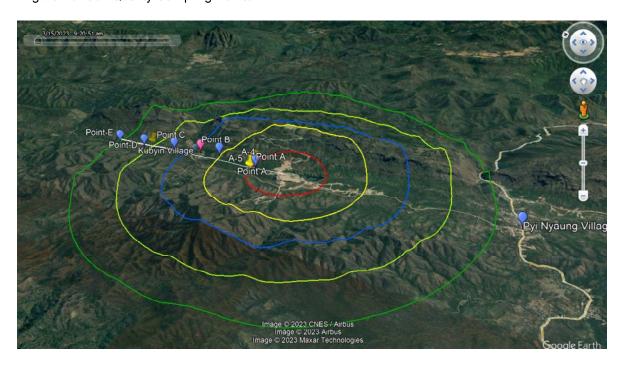



Table-21: Soil Monitoring Results in Ku Pyin village

| Parameter                                      | Unit      | Baseline | Sample A | Sample B | Sample C | Sample D | Sample E | Remark |
|------------------------------------------------|-----------|----------|----------|----------|----------|----------|----------|--------|
| Moisture %                                     | %         | 14.6     | 3.13     | 2.23     | 2.64     | 4.99     | 2.65     |        |
| pН                                             | pН        | 6.6      | 7.12     | 6.90     | 7.28     | 7.99     | 6.66     |        |
| Electrical<br>Conductivity                     | dm/s      | 0.77     | 0.08     | 0.06     | 0.09     | 0.15     | 0.06     |        |
| Organic<br>Carbon%                             | %         | 1.62     | 1.37     | 1.04     | 1.89     | 1.98     | 1.25     |        |
| Humus                                          | %         | -        | 2.36     | 1.79     | 3.25     | 3.41     | 2.15     |        |
| Total N%                                       | %         | -        | 0.108    | 0.107    | 0.107    | 0.165    | 0.107    |        |
| Ca <sup>2+</sup>                               | Meq/100gm | -        | 14.43    | 9.53     | 13.68    | 22.43    | 15.06    |        |
| Mg <sup>2+</sup>                               | Meq/100gm | -        | 2.75     | 0.68     | 1.37     | 1.40     | 2.74     |        |
| K <sup>+</sup>                                 | Meq/100gm | -        | 0.54     | 0.41     | 0.43     | 0.47     | 0.41     |        |
| Р                                              | ppm       | -        | 0.41     | 0.41     | 0.41     | 0.42     | 0.41     |        |
| K₂O                                            | mg/100gm  | -        | 25.39    | 19.02    | 20.33    | 22.11    | 19.12    |        |
| Water<br>Soluble SO <sub>4</sub> <sup>2-</sup> |           | -        | 0.04     | 0.08     | 0.08     | ND       | 0.04     |        |

#### SHWE TAUNG MINING COMPANY LIMITED



#### **Bi-Annual Environmental Monitoring Report**

#### 4.5.2 Evaluation

Agronomist stated that the current outcomes are satisfactory and that it would be beneficial for STM to implement small-scale plantations in the Ku Pyin area if STM can demonstrate the success of planting as a model plantation. He then responded that all test results have been reliable for at least a year.

#### 4.6 Waste Management Monitoring

#### 4.6.1 Generation of Non- Hazardous Waste

In Shwe Taung Cement Factory, collect non-hazardous waste generated from plant site and accommodation area every day and dispose them to Temporary Non-hazardous Storage Area. For kitchen wastes, compost or use as animal feed in nearby villages. On the other hand, dispose laboratory and clinical wastes to Meikhtila Incinerator, Meikhtila District, Mandalay Region, approved by Meikhtila City Development Committee and have plan to dispose hazardous wastes to Golden Dowa Eco-system Myanmar Co., Ltd., Accredited Waste Management Company. Figure 12 and 13 shows location map of waste disposal area and waste collection points.

Figure-14: Location Map of Collection Points of All Generated Wastes from Plant Site and Accommodation Area





#### **Bi-Annual Environmental Monitoring Report**



Figure-15: Location Map of Disposal Sites for Waste from Plant and Accommodation Area

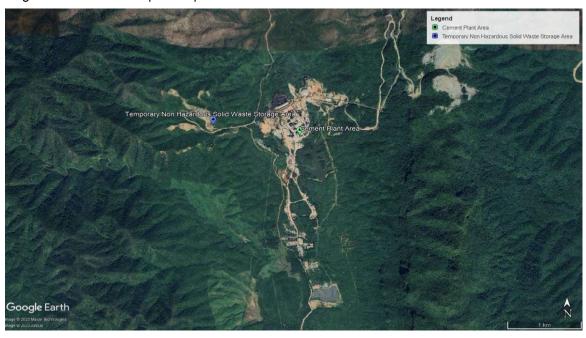



Figure-16: Location Map of Site Waste Dumping Area (Scrap Yard)





#### **Bi-Annual Environmental Monitoring Report**



Table-22: Generated Non-Hazardous Waste

| STM Non-hazardous Waste Generated from May 2024 to October 2024 |             |                                     |  |  |  |  |
|-----------------------------------------------------------------|-------------|-------------------------------------|--|--|--|--|
| Month                                                           | Weight (kg) | Remark                              |  |  |  |  |
| May 2024                                                        | 18920       |                                     |  |  |  |  |
| June 2024                                                       | 17180       |                                     |  |  |  |  |
| July 2024                                                       | 18660       | Disposed to Temporary Non-hazardous |  |  |  |  |
| August 2024                                                     | 21260       | Solid Waste Storage Area            |  |  |  |  |
| September 2024                                                  | 17280       |                                     |  |  |  |  |
| October 2024                                                    | 17120       |                                     |  |  |  |  |

#### 4.6.2 Generation of Hazardous Waste

Table-23: Generated Hazardous Waste

|     | STM Generated Hazardous Waste |                                                      |          |                |                                       |          |  |  |
|-----|-------------------------------|------------------------------------------------------|----------|----------------|---------------------------------------|----------|--|--|
| Sr. | Date                          | Type of Waste                                        | Quantity | Amount<br>(kg) | Treatment<br>Facility                 | Remarks  |  |  |
| 1   | 7 August 2023                 | Clinical, Laboratory<br>and Contaminated<br>Oil rags | -        | 1740 kg        | Meikhtila<br>Municipal<br>Incinerator | Disposal |  |  |

#### 4.6.3 Waste Management Mitigation Measures

Table-24: Waste Management Mitigation Measures

| Affected<br>Aspect      | Mitigation Measures                                                                                       | Action Taken                   | Photos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waste<br>Managem<br>ent | A waste management plan (WMP) for the project has been developed that include the following as a minimum: | Approved waste management plan | Figure 1. The wines Hexacolog life "Mic"    **Notice the record of works produced    **Filt count limit goods refer than paraging goods    **This works to stroke you production    **Where prossibly, case and maintain consumption before for temployee on the set of temployee of temployee on the set of temployee of temployee on the set of temployee of temployee of temployee on the set of temployee of te |





#### **Bi-Annual Environmental Monitoring Report**

| A waste inventory should be created to establish the types of wastes;                                                                                                                                                                                                                                                           | Established (dispose Non-hazardous waste to Temporary N-H Solid Waste Storage area whereas Hazardoous waste will be disposed to DOWA, accredited waste management company. Clinical and Laboratory waste are disposed to Meikhtila Incinerator, approved for disposal by Meikhtila City Development Committee) | Date of West Generation of STC (16-9-22)  Secret Scientific Control (16-9-22)  Secret |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify disposal routes<br>(including transport options<br>and disposal sites) for all<br>wastes generated;                                                                                                                                                                                                                    | Identified waste streams (See Figure-11 & 12 for waste collection point and disposal site)                                                                                                                                                                                                                     | Ves No.  Ves No.  Ves No.  Ves No.  Ves No.  Appropriate Dispessal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Segregate wastes and<br>recycle wherever possible;                                                                                                                                                                                                                                                                              | Segregated scrap materials for resale and reuse (See Figure-13 for Scrap Yard Area)                                                                                                                                                                                                                            | Gerap Area  Gerap  |
| Hazardous wastes should<br>be segregated and disposed<br>separately from non-<br>hazardous wastes using a<br>license contractor;                                                                                                                                                                                                | Hazardous waste treatment by DOWA and non-hazardous waste, municipal waste disposed at Temporary Non-hazardous solid waste storage area.  Medical and laboratory waste dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee)                                                     | Schwe Trains  Statistic Trains  Statis  Statistic Trains  Statistic Trains  Statistic Trains  Statisti |
| Hazardous wastes shall be labelled and stored in sealed containers that are stored on bunded hardstand.     Hazardous wastes that are unsuitable for disposal in the cement kiln (such as waste oil drums) shall be returned to the manufacturer or trucked to Mandalay for appropriate disposal at a hazardous waste facility; | Hazardous waste are collected and deposed to dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee.                                                                                                                                                                               | And the second s |



# SHWE TAUNG

#### **Bi-Annual Environmental Monitoring Report**

| Waste oil should be used for<br>kiln start-up;                                                                    | Resale by ADM                                                                                                                                                                                                                                                                                                                                        | alv A s Dol A s 14 Dela s Dolo                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organic waste for<br>composting or use as animal<br>feed in nearby villages;                                      | Organic waste (vegetables waste) are collected and composed to use as a fertilizer. Organic waste (food waste) are collected by locals for as animal feed                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
| Waste suitable for use as<br>fuel in the Mudstone Quarry<br>should be considered; and                             | Used waste oil resale to local merchant                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |
| The existing landfill is not lined and should be only used for inert (non-reactive) and non-hazardous waste only. | Implemented (Constructed Old Temporary Non- hazardous solid storage area for disposing Non-hazardous waste and operated it from 2012 to June 2019. Replantation in old place after closure. After inspection of New Temporary Non- hazardous solid storage area from ECD and governmental organizations in 5 July 2019, operate that one until now.) | Forms limited two bushfield with top will and constructed Employer's aft of the five.  Constructed Engineering Solid Non-hazardous wastes stronge outpook aft of the five.  Temporary Solid Non-hazardous wastes storage inspected by ECD and other government entities for the approval of EIA. |

#### 4.6.4 Evaluation

Implementing principles of the waste hierarchy in the most responsible manner (reduce, reuse, recycle, reclaim, dispose) in the plant site by conducting tool box talk, delivering pamphlet, offering waste bin in each plant site department and accommodation area, undertaking simultaneous mass housekeeping 9 campaigns occasionally, using waste manifest form, daily conducting housekeeping in the site and surrounding area to get awareness on waste reduction, segregation, collection and disposal practices that avoid impacts on the physical, biophysical and social environments.

#### **Bi-Annual Environmental Monitoring Report**



#### 5. Biodiversity Action Plan Implementation

STM is continuous implementing Biodiversity Action Plan (BAP) with regular Transect Survey, Invasive Survey, Wildlife Market Survey, maintaining the Ecosystem Restoration Plantations and 3 nurseries, and raising biodiversity conservation activities around the Mudstone Quarry operation.

Table-25: Biodiversity Action Plan Implementation

| Biodiversity Action Plan Implementation |                                                    |               |      |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------|---------------|------|--|--|--|--|--|
| No.                                     | Type of Survey Implementation Month Process Remark |               |      |  |  |  |  |  |
| 1                                       | Invasive Species Survey                            | December 2023 | Done |  |  |  |  |  |
| 2                                       | Transact Survey                                    | January 2024  | Done |  |  |  |  |  |
| 3                                       | Transact Survey                                    | February 2024 | Done |  |  |  |  |  |

#### **Invasive Species Survey**

These dominant species mostly found cement plant and should control in time. Mimosa pudica (Htikayone) should collect and burned to control distribution. Leucaena leucocephala, (Bawsakaing) should cut the tree before fruiting season and dig the root to stop coppicing. Chromolaena odorata (Bizat) should cut the bushes and burn before flowering season. They can reproduce especially in wind dispersal methods and sometime by animals and trucks. Detail survey will make in quarterly to monitor the distribution of invasive species. We should also use herbicide to control some invasive species.

Figure-17: Invasive Species Survey



Chromolaena odorata



Chromolaena odorata



Mimosa pudica



Leucaena leucocephala

Table-26: Ecosystem Restoration Plantation List by years

| No. | Year         | Acre | No. of trees | Remark |
|-----|--------------|------|--------------|--------|
| 1   | 2016         | 33   | 17820        |        |
| 2   | 2017         | 15   | 5950         |        |
| 3   | 2018         | 50   | 60500        |        |
| 4   | 2019         | 115  | 50100        |        |
| 5   | 2020         | 150  | 81100        |        |
| 6   | 2021         | 150  | 81100        |        |
| 7   | 2023         | 65   | 35100        |        |
|     | 2024 (Total) | 578  | 331670       |        |

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



STM has successfully implemented an ecosystem restoration initiative by establishing plantations for land leased agreement with the government since 2016. The maintenance of these plantations is diligently carried out through routine operations, including weeding, patching, and fire protection across all areas.

Table-27: Third Weeding Progress of Ecosystem Restoration Plantations

| Location         | Particular | Patched         | Patched<br>Area<br>in June<br>2024 | July            | August    | September      | October         |
|------------------|------------|-----------------|------------------------------------|-----------------|-----------|----------------|-----------------|
|                  |            | Area<br>in 2023 |                                    | 1st<br>Weeding  | Patching  | 2nd<br>Weeding | 2nd<br>Weeding  |
| Near Apache      | ERP 33 Ac  | 7 Ac            | -                                  | 7 Ac<br>(100%)  | 2100 Nos  | 7 Ac<br>(100%) | -               |
| Near Apache      | ERP 65 Ac  | 33 Ac           | -                                  | 33 Ac<br>(100%) | 700 Nos   | 33 Ac<br>(50%) | 33 Ac<br>(100%) |
| On the Dockson   | ERP 100 Ac | 16 Ac           | -                                  | 16 Ac<br>(100%) | 1000 Nos  | 0%             | 16 Ac<br>(100%) |
| South Pyi Nyaung |            | -               | 9 Ac<br>(4860 Nos.)                | 9 Ac<br>(100 %) | -         | 9 Ac<br>(100%) | -               |
| Grand Total      |            |                 |                                    | 65 Ac<br>(100%) | 3800 Nos. | 65 Ac (        | 100%)           |

Between May and October 2024, Shwe Taung Mining (STM) carried out comprehensive ecosystem restoration activities within the Pyi Nyaung and Ku Pyin Reserved Forests. The activities commenced in late May with patching operations across 100 acres of the Pyi Nyaung Reserved Forest, successfully restoring 4,860 plants by mid-June using zero-burning techniques. In July, a first round of weeding was completed in this area, with a status check conducted on July 9 confirming its success. In August, STM initiated patching activities in both the Ku Pyin and Pyi Nyaung Reserved Forests, planting a total of 3,800 plants, with the process wrapping up by mid-month. Fertilization activities were subsequently completed by the end of August. A second round of weeding commenced in September, achieving 65% completion by the end of the month, and was fully finalized in mid-October, as confirmed by HSE for the status checks.

Figure-18: Patching Process at Ecosystem Restoration Plantation







STM took zero burning practice in all plantation to protect carbon emission from our activities. It may lead to develop slow growth of some species such as Kyun and Myanmar Kokko. The grow rate of Sein Pan is the best growth rate that average is about 7 ft in South Pyi Nyaung plantation. Mazili grow rate is the best in plantation 65 acre near cement plant. Padauk was damage due to domestic buffalo from near village. STM will mitigate to get better growth rate plantation in next year by changing of planting pattern, selection of species, preparation of soil before planting.

STM will operated fire protection for all patched area in plantation to protect wild fire and its damages before dry seasons.

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



#### 6. Corporate Social Responsibility

STM Mudstone Quarry implements Corporate Social Responsibility (CSR) to communities and release newsletter in quarterly, see in Appendix-D.

#### 7. Occupational Health and Safety

Workers are at risk of occupational health and safety incidents. Such incidents may be linked to the physical environment in which they operate, the procedures they have to abide by or the on-site health and safety culture.

Shwe Taung has existing occupational health and safety policies and procedures in place at the mudstone quarry and these are applicable for the expansion project. These procedures include requirements in terms of operational safety (blasting, excavator, ladder, crane and forklift management, working at height, personal protective equipment use, lifting operation, emergency management, etc.). With the support of the IFC, STC has retained international consultants to assist with the review, update and implementation of its occupational health and safety procedures.

Generally, there is one to two daytime blasting occurred at mudstone quarry within two to three months. Blasting is thus infrequent and will be managed under the Standard Operating Procedure (SOP) for blasting and excavation to ensure safety of staff and community.

#### 7.1 Fire Safety Measures

In compliance with the directives of the Myanmar Fire Services Department, STM has implemented a series of fire safety measures to mitigate fire hazards in the workplace. These measures include conducting regular fire drills and maintaining firefighting equipment.

The main objective of regular fire drills is to ensure all staff are familiar with fire safety protocols and the use of firefighting equipment. Training were conducted to familiarize staff with the operation of a fire truck in case of an emergency. Moreover, all employees were trained on the correct procedures to follow upon hearing the fire alarm. This includes how to safely evacuate to the nearest assembly area within a short timeframe. Staff were also trained to identify and use firefighting facilities such as fire hydrants, fire extinguishers, and other related equipment. Activities during the drill were meticulously documented, and photographs were taken to provide a visual record of the procedures and participation.

Figure - 19: Fire Drill Records





#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**







#### 7.2 Occupational Hazard Prevention and First Aid Training

Ensuring the safety and well-being of our employees is paramount. STM conducts comprehensive training programs focused on occupational hazard prevention and first aid. These programs are meticulously documented with detailed procedures and photographic evidence to uphold high standards of health and safety compliance.

OHS training at STC encompasses a broad spectrum of critical safety topics. Employees receive training on energy isolation to prevent accidental startups, and on confined space and rescue equipment to ensure safe operations in restricted areas. Office safety training covers best practices for maintaining a safe work environment, while working at height training emphasizes the use of proper safety measures and equipment. Training for riggers and signalmen ensures safe rigging practices and effective communication during lifting operations. Hot work training covers procedures and precautions for tasks involving open flames or heat, and safety inductions provide new employees with essential safety knowledge.

Additional training includes belt conveyor guarding and machine cover to enhance machinery safety, first aid for immediate response to injuries, and scaffolding safety for the proper erection and use of scaffolds. Programs such as "Take 2 Minutes" encourage employees to assess risks before starting tasks, and safety interaction and observation promote proactive safety discussions. Electrical safety training addresses procedures for working with electrical systems, while manual handling training teaches proper techniques to prevent injuries. Risk management training focuses on identifying, assessing, and mitigating workplace risks.

Internally, STM conduct annual employee safety inductions to refresh safety protocols, permit to work training to ensure understanding of the permit system for hazardous tasks, and safe work procedure training. Risk assessment training is provided to develop techniques for evaluating and mitigating risks. Lototo (Lock Out, Tag Out, Try Out) training ensures the safe de-energization of equipment, and specific electrical training addresses managing electrical hazards. Regular office safety training and fire drills are also conducted to reinforce these practices.

A key component of STM's training is first aid. First aid training program equips employees with the skills necessary to provide immediate assistance in the event of an injury or health emergency. This includes basic first aid techniques, CPR, and the use of first aid equipment. Employees learn how to respond to a variety of medical situations, ensuring that they are prepared to act swiftly and effectively. This training is crucial in minimizing the impact of workplace injuries and can be life-saving in critical situations. Moreover, to safeguard occupational health, STM collaborates with the Social Security Board to conduct health checkups using a mobile medical unit and arranges necessary medical care for employees as needed.

#### SHWE TAUNG Building Materials

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



Figure –20: OHS, First Aid Trainings Records and Medical check-ups from Social Security Board using Mobile Medical Unit









#### 8. Conclusion and Recommendation

STM Mudstone Quarry demonstrates the implementation of Environment Monitoring Plan in which they are operating and has properly assessed the key potential environmental and social impacts associated with the Mudstone Quarry operation. It is ensuring that the Myanmar environmental legislative compliance and IFC standards of good practice during the Mudstone Quarry expansion project and operations in Thazi Township, Mandalay Region.

Mitigation measures are properly implemented as per stated in EMP, it is expected that the environmental and social impacts are managed by STM with robust environmental management system that is implemented by a well-resourced, integrated and competent HSE staffs as per compliance of STM Mudstone Quarry EIA report.

The Environment Management Plan concludes that no major direct impacts are anticipated from this Project and all environmental impacts have been properly and progressively mitigated. These monitoring results will be properly communicated to stakeholders, especially local community, as per Stakeholders Engagement Plan. Moreover, biannual environmental monitoring reports are disclosed to community at Information Centers in Pyi Nyaung and Ku Pyin villages and has uploaded in Apache Cement Website <a href="https://www.apachecement.com/">https://www.apachecement.com/</a>. The "Status of Mudstone Biannual Environmental Monitoring Reports Submission to ECD" can be seen in the Appendix-A.

#### SHWE TAUNG Building Materials

#### SHWE TAUNG MINING COMPANY LIMITED

#### **Bi-Annual Environmental Monitoring Report**



### 9. Appendix

#### **APPENDIX-A**

Figure: Water Suppression Map to mitigate dust emission in plant site



Table: Water Suppression Record from May to October 2024 to mitigate dust suppression in plant site.

|                   |               |                              |               | Water Sup                    | oression      | Record 2024                   |               |                               |               |                              |
|-------------------|---------------|------------------------------|---------------|------------------------------|---------------|-------------------------------|---------------|-------------------------------|---------------|------------------------------|
| Month             | (Capa         | ruck 1<br>city: 2200<br>gal) | (Capa         | ruck 2<br>city: 4000<br>gal) |               | ruck 3<br>acity: 4000<br>gal) |               | ruck 4<br>acity: 4500<br>gal) |               | ruck 5<br>acity: 800<br>gal) |
| Month             | Total<br>Load | Water<br>Consump<br>tion     | Total<br>Load | Water<br>Consump<br>tion     | Total<br>Load | Water<br>Consump<br>tion      | Total<br>Load | Water<br>Consump<br>tion      | Total<br>Load | Water<br>Consump<br>tion     |
| May 2024          | -             | -                            | 72            | 288000                       | -             | -                             | 34            | 153000                        | -             | -                            |
| June 2024         | -             | -                            | 21            | 84000                        | ı             | 1                             | 18            | 81000                         | 78            | 62400                        |
| July 2024         | -             | -                            | 27            | 108000                       | ı             | -                             | 83            | 373500                        | 141           | 112800                       |
| August<br>2024    | -             | -                            | 19            | 76000                        | -             | -                             | 61            | 274500                        | 159           | 127200                       |
| September<br>2024 | -             | -                            | 1             | -                            | -             | -                             | 81            | 364500                        | 212           | 169600                       |
| October<br>2024   | -             | -                            | 1             | -                            | 1             | 1                             | 96            | 432000                        | 220           | 17600                        |

Note: Source of water supply from Sedimentation Ponds





#### **Bi-Annual Environmental Monitoring Report**

Table: Status of Mudstone Biannual Environmental Monitoring Reports Submission to ECD

| ဝန်ကြီးရုံး<br>အတည်ပြုချက်<br>ရရှိသည့် ရက်စွဲ | (၆) လပတ်<br>စောင့်ကြဝ်ကြည့်ရှမှု<br>အစီရင်ခံစာ<br>တင်ပြသည့် ရက်စွဲ | (၆) လပတ်<br>စောင့်ကြပ်ကြည့်ရှုမှု<br>အစီရင်ခံစာ တင်ပြသည့်<br>အကြိမ်အရေအတွက် | စောင့်ကြပ်ကြည့်ရှုမှုအစီရင်ခံစာ<br>တင်ပြသည့် အချိန်ကာလ<br>အပိုင်းအခြား | မှတ်ချက်                                                                                                                                                         |
|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | lo i lo ic                                                         | ပထမအကြိမ်                                                                   | ၂၀၂၂ ခုနှစ် ဒီဇင်ဘာလမှ ၂၀၂၃<br>ခုနှစ် မေလအထိ                           |                                                                                                                                                                  |
|                                               | ე <sub>ტ</sub> .კ.კიკ                                              | ဒုတိယအကြိမ်                                                                 | ၂၀၂၃ ခုနှစ် ဇွန်လမှ ၂၀၂၃ ခုနှစ်<br>နိုဝင်ဘာလအထိ                        |                                                                                                                                                                  |
| ၁.၁၁.၂၀၂၂                                     | ၂၈.၆.၂၀၂၄                                                          | တတိယအကြိမ်                                                                  | ၂၀၂၃ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၄<br>ခုနှစ် ဧပြီလအထိ                        | မန္တလေးတိုင်းရုံး၏ ညွှန်ကြားချက်အရ<br>အစီရင်ခံစာ တင်ပြသည့် ကာလ<br>အပိုင်းအခြားအား ဝန်ကြီးရုံးအတည်ပြု<br>သည့် ရက်စွဲအရ ပြန်လည်ညှိနှိုင်း<br>ပြင်ဆင်တင်ပြခဲ့ပါသည်။ |
|                                               | ၂၀၂၄ ခုနှစ်<br>နိုဝင်ဘာလ                                           | စတုတ္ထအကြိမ်                                                                | ၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ်<br>အောက်တိုဘာလအထိ                        |                                                                                                                                                                  |





#### **Bi-Annual Environmental Monitoring Report**

### **APPENDIX-B**





**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-1) (Ku Pyin Stream Water Quality Results)



#### **Water Quality Test Report**

Nature of water

**Stream Water** 

Location

Ku Pyin Village

Date of sample collection

18.07.2024

Date of sample examination

19.07.2024

Date of completing

25.07.2024

| Description of Analysis       | Analysis Results | WHO Drinking water Guideline |
|-------------------------------|------------------|------------------------------|
| PH                            | 8.3              | 6.5 ~ 8.5                    |
| Colour(True)                  | 65 PCU           | 15 PCU                       |
| Turbidity                     | 21.6 NTU         | 5 NTU                        |
| Calcium Hardness              | 225 mg/l         | 500 mg/l as CaCO3            |
| Chloride(as Cl)               | 6 mg/l           | 250mg/l                      |
| Sulphate(as SO <sub>4</sub> ) | 20 mg/l          | 200mg/l                      |
| Total Suspended Solid(TSS)    | 67 mg/l          | 50mg/l                       |

Tested by

09

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

**Approved By** 

Ye Naing Soe Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.



### **Water Quality Test Report**

Nature of water

Stream Water

Location

**Ku Pyin Village** 

Date of sample collection

20.08.2024

Date of sample examination

20.08.2024

Date of completing

22.08.2024

| Description of Analysis       | <b>Analysis Results</b> | WHO Drinking water Guideline |
|-------------------------------|-------------------------|------------------------------|
| p <sup>H</sup>                | 8.5                     | 6.5 ~ 8.5                    |
| Colour(True)                  | 35 PCU                  | 15 PCU                       |
| Turbidity                     | 15.3 NTU                | 5 NTU                        |
| Calcium Hardness              | 180 mg/l                | 500 mg/l as CaCOз            |
| Chloride(as Cl)               | 2 mg/l                  | 250mg/l                      |
| Nitrate                       | 7 mg/l                  | 50mg/l                       |
| Sulphate(as SO <sub>4</sub> ) | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS)    | 41 mg/l                 | 50mg/l                       |
| E-Coli                        | 2700(CFU/100)ml         | 0(CFU/100)ml                 |
| Coliform                      | 19488(CFU/100)ml        | 0(CFU/100)ml                 |

**Tested by** 

W

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

**Approved By** 

Ye Naing See

Lab & QC Department



#### **Water Quality Test Report**

Nature of water

Stream Water

Location

**Ku Pyin Village** 

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| PH                         | 7.9                     | . 6.5 ~8.5                   |
| Colour(True)               | 0 PCU                   | 15 PCU                       |
| Turbidity                  | 0.71 NTU                | 5 NTU                        |
| Calcium Hardness           | 270 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as CI)            | 4 mg/l                  | 250mg/l                      |
| Sulphate(as SO4)           | 20 mg/l                 | 200mg/i                      |
| Total Suspended Solid(TSS) | 3 mg/l                  | 50mg/l                       |
| Nitrate                    | 4 mg/l                  | 50mg/l                       |

**Tested by** 

O

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye Naing Soe Team Leader

Lab & QC Department



### **Lab & Quality Control Department**

### **Water Quality Test Report**

**Nature of water** 

**Stream Water** 

Location

**Ku Pyin Village** 

Date of sample collection

20.09.2024

Date of sample examination

21.09.2024

**Date of completing** 

25.09.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |  |
|----------------------------|-------------------------|------------------------------|--|
| P <sup>H</sup>             | 8.5                     | 6.5 ~8.5                     |  |
| Colour(True)               | 15 PCU                  | 15 PCU                       |  |
| Turbidity                  | 3.89 NTU                | 5 NTU                        |  |
| Calcium Hardness           | 246 mg/l                | 500 mg/l as CaCO3            |  |
| Chloride(as Cl)            | 2 mg/l                  | 250mg/l                      |  |
| Sulphate(as SO4)           | 10 mg/l                 | 200mg/l                      |  |
| Total Suspended Solid(TSS) | 13 mg/l                 | 50mg/l                       |  |
| Nitrate                    | 5.9 mg/l                | 50mg/l                       |  |

**Tested by** 

Han Ko Win

Chemist

Lab & QC Department

**Shwe Taung Cement Co., Ltd.** 

Approved By Fox

Ye` Naing Soe Team Leader

Lab & QC Department



### **Water Quality Test Report**

Nature of water

**Stream Water** 

Location

**Ku Pyin Village** 

Date of sample collection

23.10.2024

Date of sample examination

23.10.2024

**Date of completing** 

25.10.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| PH                         | 8.6                     | 6.5 ~ 8.5                    |
| Colour(True)               | 10 PCU                  | 15 PCU                       |
| Turbidity                  | 0.44 NTU                | 5 NTU                        |
| Calcium Hardness           | 200 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as Cl)            | 1 mg/l                  | 250mg/l                      |
| Sulphate(as SO4)           | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS) | 3 mg/l                  | 50mg/l                       |
| Nitrate                    | 16 mg/l                 | 50mg/l                       |

**Tested by** 

THÝ

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

**Approved By** 

e` Naing Soe

Team Leader

Lab & QC Department





**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-2) (Pyi Nyaung Stream Water Quality Results)



### **Water Quality Test Report**

Nature of water

**Stream Water** 

Location

**Near Pyin Nyaung Village** 

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

| Description of Analysis       | <b>Analysis Results</b> | WHO Drinking water Guideline |
|-------------------------------|-------------------------|------------------------------|
| D <sub>H</sub>                | 7.8                     | 6.5 ~ 8.5                    |
| Colour(True)                  | 20 PCU                  | 15 PCU                       |
| Turbidity                     | 1.11 NTU                | 5 NTU                        |
| Calcium Hardness              | 207 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as Cl)               | 4 mg/l                  | 250mg/l                      |
| Sulphate(as SO <sub>4</sub> ) | 20 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS)    | 10 mg/l                 | 50mg/l                       |
| Nitrate                       | 9.1 mg/l                | 50mg/l                       |

Tested by,

00

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

**Approved By** 

e` Naing So

Lab & QC Department



#### **Water Quality Test Report**

Nature of water

**Stream Water** 

Location

**Near Pyin Nyaung Village** 

Date of sample collection

18.07.2024

Date of sample examination

19.07.2024

**Date of completing** 

25.07.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| P <sup>H</sup>             | 7.9                     | 6.5 ~ 8.5                    |
| Colour(True)               | 25 PCU                  | 15 PCU                       |
| Turbidity                  | 1.36 NTU                | 5 NTU                        |
| Calcium Hardness           | 195 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as CI)            | 6 mg/l                  | 250mg/l                      |
| Sulphate(as SO4) .         | 20 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS) | 8 mg/l                  | 50mg/l                       |

Tested by,

OV

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Lab & QC Department



### **Lab & Quality Control Department**

### **Water Quality Test Report**

Nature of water

**Stream Water** 

Location

**Near Pyin Nyaung Village** 

Date of sample collection

21.08.2024

Date of sample examination

21.08.2024

Date of completing

23.08.2024

| Description of Analysis       | <b>Analysis Results</b> | WHO Drinking water Guideline |
|-------------------------------|-------------------------|------------------------------|
| P <sup>H</sup>                | 8.2                     | 6.5 ~8.5                     |
| Colour(True)                  | 5 PCU                   | 15 PCU                       |
| Turbidity                     | 4.36 NTU                | 5 NTU                        |
| Calcium Hardness              | 150 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as Cl)               | 5 mg/l                  | 250mg/l                      |
| Nitrate                       | 5.2mg/l                 | 50mg/l                       |
| Sulphate(as SO <sub>4</sub> ) | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS)    | 17 mg/l                 | 50mg/l                       |
| E-Coli                        | 129 (CFU/100)ml         | 0(CFU/100)ml                 |
| Coliform                      | 2394 (CFU/100)ml        | 0(CFU/100)ml                 |

Tested by,

M

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Lab & QC Department

e` Naing So



### **Lab & Quality Control Department**

### **Water Quality Test Report**

**Nature of water** 

**Stream Water** 

Location

**Near Pyin Nyaung Village** 

Date of sample collection

23.10.2024

Date of sample examination

23.10.2024

**Date of completing** 

25.10.2024

| Description of Analysis       | <b>Analysis Results</b> | WHO Drinking water Guideline |  |
|-------------------------------|-------------------------|------------------------------|--|
| P <sup>H</sup>                | 8.3                     | 6.5 ~ 8.5                    |  |
| Colour(True)                  | 10 PCU                  | 15 PCU                       |  |
| Turbidity                     | 7.21 NTU                | 5 NTU                        |  |
| Calcium Hardness .            | 168 mg/l                | 500 mg/l as CaCO3            |  |
| Chloride(as Cl)               | 2 mg/l                  | 250mg/l                      |  |
| Sulphate(as SO <sub>4</sub> ) | 10 mg/l                 | 200mg/l                      |  |
| Total Suspended Solid(TSS)    | 22 mg/l                 | 50mg/l                       |  |
| Nitrate                       | 8.4 mg/l                | 50mg/l                       |  |

Tested by,

M

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing Soe Team Leader <

**Lab & QC Department** 





**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-3) (Ye Shin Stream Water Results)



### **Lab & Quality Control Department**

#### **Water Quality Test Report**

Nature of water

Stream Water(Ye Chin)

Location

Near 6 Unit(Family Housing)

Date of sample collection

18.07.2024

Date of sample examination

19.07.2024

Date of completing

25.07.2024

| Description of Analysis       | <b>Analysis Results</b> | WHO Drinking water Guideline |
|-------------------------------|-------------------------|------------------------------|
| p <sup>H</sup>                | 8.3                     | 6.5 - 8.5                    |
| Colour(True)                  | 65 PCU                  | 15 PCU                       |
| Turbidity                     | 12.9 NTU                | 5 NTU                        |
| Calcium Hardness              | 147 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as CI)               | 3 mg/l                  | 250mg/l                      |
| Sulphate(as SO <sub>4</sub> ) | 20 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS)    | 36 mg/l                 | 50mg/l                       |

Tested by,

O

Han Ko Win Chemist

Lab & QC Department Shwe Taung Cement Co., Ltd. **Approved By** 

Ye' Naing Soe

Lab & QC Department



#### **Water Quality Test Report**

Nature of water

Stream Water(Ye Chin)

Location

Near 6 Unit(Family Housing)

Date of sample collection

21.08.2024

Date of sample examination

21.08.2024

Date of completing

23.08.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| PH                         | 8.4                     | 6.5 ~ 8.5                    |
| Colour(True)               | 10 PCU                  | 15 PCU                       |
| Turbidity                  | 3.73 NTU                | 5 NTU                        |
| Calcium Hardness           | 78 mg/l                 | 500 mg/l as CaCO3            |
| Chloride(as CI) .          | 2 mg/l                  | 250mg/l                      |
| Nitrate                    | 10.4 mg/l               | 50mg/l                       |
| Sulphate(as SO4)           | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS) | 11 mg/l                 | 50mg/l                       |
| E-Coli                     | 604 (CFU/100)ml         | 0(CFU/100)ml                 |
| Coliform                   | 5114 (CFU/100)ml        | 0(CFU/100)ml                 |

Tested by,

ON

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Ye` Naing Sole Team Leader

Lab & QC Department



#### **Water Quality Test Report**

**Nature of water** 

**Stream Water(Ye Chin)** 

Location

**Near 6 Unit(Family Housing)** 

Date of sample collection

20.09.2024

Date of sample examination

21.09.2024

**Date of completing** 

25.09.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| P <sup>H</sup>             | 8.4                     | 6.5 ~ 8.5                    |
| Colour(True)               | 40 PCU                  | 15 PCU                       |
| Turbidity                  | 18.2 NTU                | 5 NTU                        |
| Calcium Hardness           | 90 mg/l                 | 500 mg/l as CaCO3            |
| Chloride(as Cl) .          | 2 mg/l                  | 250mg/l                      |
| Sulphate(as SO4)           | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS) | 46 mg/l                 | 50mg/l                       |

Tested by,

Ž

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By, to

Ye` Naing Soe Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.



### **Lab & Quality Control Department**

#### **Water Quality Test Report**

Nature of water

Stream Water(Ye Chin)

Location

Near 6 Unit(Family Housing)

Date of sample collection

23.10.2024

Date of sample examination

23.10.2024

**Date of completing** 

25.10.2024

| Description of Analysis    | <b>Analysis Results</b> | WHO Drinking water Guideline |
|----------------------------|-------------------------|------------------------------|
| P <sup>H</sup>             | 8.3                     | 6.5 ~ 8.5                    |
| Colour(True)               | 25 PCU                  | 15 PCU                       |
| Turbidity                  | 5.31 NTU                | 5 NTU                        |
| Calcium Hardness           | 129 mg/l                | 500 mg/l as CaCO3            |
| Chloride(as CI)            | 1 mg/l                  | 250mg/l                      |
| Sulphate (as SO4)          | 10 mg/l                 | 200mg/l                      |
| Total Suspended Solid(TSS) | 13 mg/l                 | 50mg/l                       |
| Nitrate                    | 7.8 mg/l                | 50mg/l                       |

Tested by,

S

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

e` Naing Soe

Lab & QC Department





#### **Bi-Annual Environmental Monitoring Report**

# APPENDIX - (B-4) (Supply Water (Lower Reservoir))



### **Water Quality Test Report**

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

15.05.2024

Date of sample examination

16.05.2024

Date of completing

22.05.2024

| <b>Description of Analysis</b> | Analysis Results | WHO Drinking water Guideline |
|--------------------------------|------------------|------------------------------|
| PH                             | 8.3              | 6.5 ~ 8.5                    |
| Colour(True)                   | 60 PCU           | 15 PCU                       |
| Turbidity                      | 9.83 NTU         | 5 NTU                        |
| Calcium Hardness               | 90 mg/l          | 500 mg/l as CaCO3            |
| Chloride(as Cl)                | 5 mg/l           | 250mg/l                      |
| Sulphate(as SO4)               | 20 mg/l          | 200mg/l                      |
| Total Suspended Solid(TSS)     | 40 mg/l          | 50mg/l                       |
| Nitrate                        | 4.8 mg/l         | 50mg/l                       |

Tested by,

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

**Team Leader** 

Lab & QC Department



#### **Water Quality Test Report**

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

| <b>Description of Analysis</b> | Analysis Results | WHO Drinking water Guideline |
|--------------------------------|------------------|------------------------------|
| P <sup>H</sup>                 | 8.6              | 6.5 ~ 8.5                    |
| Colour(True)                   | 100 PCU          | 15 PCU                       |
| Turbidity                      | 10.2 NTU         | 5 NTU                        |
| Calcium Hardness               | 135 mg/l         | 500 mg/l as CaCO3            |
| Chloride(as Cl)                | 5 mg/l           | 250mg/l                      |
| Sulphate(as SO4)               | 20 mg/l          | 200mg/l                      |
| Total Suspended Solid(TSS)     | 37 mg/l          | 50mg/l                       |
| Nitrate                        | 26 mg/l          | 50mg/I                       |

Tested by,

 $\cup$ 

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

**Approved By** 

e` Naing Soe eam Leader

Lab & QC Department



### **Lab & Quality Control Department**

#### **Water Quality Test Report**

**Nature of water** 

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

10.07.2024

Date of sample examination

11.07.2024

Date of completing

17.07.2024

| Description of Analysis       | Analysis Results     | WHO Drinking water Guideline |  |
|-------------------------------|----------------------|------------------------------|--|
| PH                            | 8.5                  | 6.5 ~ 8.5                    |  |
| Colour(True)                  | (True) 40 PCU 15 PCU |                              |  |
| Turbidity                     | 7.74 NTU             | 5 NTU                        |  |
| Calcium Hardness              | 120 mg/l             | 500 mg/l as CaCO3            |  |
| Chloride(as Cl)               | 5 mg/l               | 250mg/l                      |  |
| Sulphate(as SO <sub>4</sub> ) | 20 mg/l              | 200mg/l                      |  |
| Total Suspended Solid(TSS)    | 37 mg/l              | 50mg/l                       |  |

Tested by,

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ve` Naing Soe

Team Leader

Lab & QC Department



### **Water Quality Test Report**

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

12.08.2024

Date of sample examination

12.08.2024

Date of completing

13.08.2024

| Description of Analysis    | Analysis Results | WHO Drinking water Guideline |  |
|----------------------------|------------------|------------------------------|--|
| P <sup>H</sup>             | 8.8              | 6.5 ~ 8.5                    |  |
| Colour(True)               | 15 PCU           | 15 PCU                       |  |
| Turbidity                  | 7.93 NTU         | 5 NTU                        |  |
| Calcium Hardness           | 129 mg/l         | 500 mg/l as CaCO3            |  |
| Chloride(as CI)            | 3 mg/l           | 250mg/l                      |  |
| Sulphate(as SO4)           | 20 mg/l          | 200mg/l                      |  |
| Nitrate                    | 7.6 mg/l         | 50mg/I                       |  |
| Total Suspended Solid(TSS) | 34 mg/l          | 50mg/l                       |  |

Tested by,

( STO)

Han Ko Win

Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

P Naing Sole

Lab & QC Department



### **Water Quality Test Report**

**Nature of water** 

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

17.09.2024

Date of sample examination

17.09.2024

**Date of completing** 

21.09.2024

| <b>Description of Analysis</b> | Analysis Results | WHO Drinking water Guideline |
|--------------------------------|------------------|------------------------------|
| P <sup>H</sup>                 | 8.4              | 6.5 ~ 8.5                    |
| Colour(True)                   | 20 PCU           | 15 PCU                       |
| Turbidity .                    | 16.9 NTU         | 5 NTU                        |
| Calcium Hardness               | 99 mg/l          | 500 mg/l as CaCO3            |
| Chloride(as Cl)                | 3 mg/l           | 250mg/l                      |
| Sulphate(as SO <sub>4</sub> )  | 10 mg/l          | 200mg/l                      |
| Total Suspended Solid(TSS)     | 41 mg/l          | 50mg/l                       |
| Nitrate                        | 6 mg/l           | 50mg/l                       |

Tested by,

- Jej

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By, 400

Ye` Naing Soe Team Leader Lab & QC Department



# **Water Quality Test Report**

**Nature of water** 

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

18.10.2024

Date of sample examination

19.10.2024

Date of completing

23.10.2024

| <b>Description of Analysis</b> | Analysis Results | WHO Drinking water Guideline |
|--------------------------------|------------------|------------------------------|
| P <sup>H</sup>                 | 8.5              | 6.5 ~ 8.5                    |
| Colour(True)                   | 25 PCU           | 15 PCU                       |
| Turbidity                      | 5.49 NTU         | 5 NTU                        |
| Calcium Hardness .             | 126 mg/l         | 500 mg/l as CaCO3            |
| Chloride(as CI)                | 3 mg/l           | 250mg/l                      |
| Sulphate(as SO4)               | 10 mg/l          | 200mg/l                      |
| Total Suspended Solid(TSS)     | 22 mg/l          | 50mg/l                       |
| Nitrate                        | 7 mg/l           | 50mg/l                       |

Tested by,

(X)

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Naing Soe

Lab & QC Department





**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-5) (Supply Water (Lower Reservoir)) Tested by External Laboratories



#### GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar, Phone No Fax No: (+95) 1 2309051





Doc No: GEM-LB-R004E/01 Page1of2

Report No. : GEM-LAB-202408095

Revision No. : 1

Report Date 22 August, 2024

Application No.: 0235-C001

### Test Report

Client Name

Shwe Taung Cement Co.,Ltd

Address

No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Shwe Taung Cement Water Quality Test

Sample Description

Sample Name 📑

Supply Water

Sampling Date 🛊 7 August, 2024

Sample No.

W-2408079

Sampling By: Withdraw GEM

Waste Profile No.: -

Sample Received Date : 7 August, 2024

Analytical Date : 7-22/08/2024

| No. | Parameter                     | Method                                                                                                                                                    | Unit | Result | LOQ   |
|-----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------|
| 1   | Temperature                   | Instrument Analysis Method                                                                                                                                | °C   | 26.8   | 0.0   |
| 2   | рН                            | APHA 4500 H+ B (Electrometric Method)                                                                                                                     | =,   | 8.31   | 0.00  |
| 3   | ss                            | APHA 2540D (Dry at 103-105'C Method)                                                                                                                      | mg/l | 12     | -     |
| 4   | BOD (5)                       | HACH Method 10099 (Respirometric Method)                                                                                                                  | mg/l | 10.35  | 0.00  |
| 5   | COD (Cr)                      | APHA 5220D (Close Reflux Colorimetric Method)                                                                                                             | mg/l | 30.7   | 0.7   |
| 6   | Oil and Grease                | APHA 5520B (Partition-Gravimetric Method)                                                                                                                 | mg/l | <3.1   | 3.1   |
| 7   | Total Phosphorous             | APHA 4500-P E (Ascorbic Acid Method)                                                                                                                      | mg/l | <0.05  | 0.05  |
| 8   | Ammonia                       | HACH Method 10205 (Silicylate TNT Plus Method)                                                                                                            | mg/l | <0.02  | 0.02  |
| 9   | Mercury                       | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 10  | Zinc                          | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 11  | Arsenic                       | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.010 | 0.010 |
| 12  | Chromium                      | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 13  | Cadmium                       | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 14  | Selenium                      | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.010 | 0.010 |
| 15  | Lead                          | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 16  | Copper                        | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 17  | Nickel                        | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 18  | Silver                        | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | ≤0.002 | 0.002 |
| 19  | Iron                          | APHA 3120 B (Inductively Coupled Plasma (ICP) Method)                                                                                                     | mg/l | 0.274  | 0.002 |
| 20  | Cyanide                       | HACH 8027 (Pyridine -Pyrazalone Method)                                                                                                                   | mg/l | <0.002 | 0.002 |
| 21  | Total Cyanide                 | Distillation Process: APHA 4500-CN- C. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine -Pyrazalone Method) | mg/l | <0.002 | 0.002 |
| 22  | Hexavalent<br>Chromium (Cr6+) | ISO 11083: 1994 (Determination of chromium(VI) Spectrometric method using 1-5-diphenylcarbazide)                                                          | mg/l | <0.05  | 0.05  |





#### GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051





Doc No: GEM-LB-R004E/01 Page2of2

Report No. : GEM-LAB-202408095

Revision No.: 1

Report Date : 22 August, 2024

Application No.: 0235-C001

#### Test Report

Client Name

: Shwe Taung Cement Co.,Ltd

Address

No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

: Shwe Taung Cement Water Quality Test

Sample Description

Sample Name 😲 Supply Water

Sampling Date : 7 August, 2024

Sample No.

W-2408079

Sampling By : Withdraw GEM

Waste Profile No.: -

Sample Received Date : 7 August, 2024

Analytical Date: 7-22/08/2024

| No. | Parameter      | Method                                                                             | Unit | Result  | LOQ   |
|-----|----------------|------------------------------------------------------------------------------------|------|---------|-------|
| 23  | Fluoride       | USEPA SPANDS 2 Method                                                              | mg/l | 0.227   | 0.014 |
| 24  | Total Chlorine | APHA 4500 CL G (DPD Colorimetric Method)                                           | mg/l | 0.1     | 0.1   |
| 25  | Sulphide       | HACH 8131 (USEPA Methylene Blue Method)                                            | mg/l | 0.019   | 0.005 |
| 26  | PhenoIs        | USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation)) | mg/l | 0.006   | 0.002 |
| 27  | Total Coliform | APHA 9221B (Standard Total Coliform Fermentation Technique)                        | mg/l | 54000.0 | 1.8   |

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 22nd edition

Analysed By:

Cherry Myint Thein

Assistant Manager

\*\*\* End Of Document \*\*\*

Approved By:

Ni Ni Aye Lwin Aug 22, 2024

Manager





WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012

W0824 167 Issue No - 1.0/Page 1 of 2

# aboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

#### WATER QUALITY TEST RESULTS FORM

| Client                                  | Shwe Taung Cement                |
|-----------------------------------------|----------------------------------|
| Nature of Water                         | ဆည်ရေ                            |
| Location                                | ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။ |
| Date and Time of collection             | 6.8.2024 (10:30 AM)              |
| Date and Time of arrival at Laboratory  | 7.8.2024                         |
| Date and Time of commencing examination | 8.8.2024                         |
| Date and Time of completing             | 9.8.2024                         |

#### Results of Water Analysis

#### WHO Drinking Water Guideline (Geneva - 1993)

| рН                              |      |                           | 6.5 - 8.5                     |
|---------------------------------|------|---------------------------|-------------------------------|
| Colour (True)                   |      | TCU                       | 15 TCU                        |
| Turbidity                       |      | NTU                       | 5 NTU                         |
| Conductivity                    |      | micro S/cm                |                               |
| Total Hardness                  |      | mg/l as CaCO <sub>3</sub> | 500 mg/l as CaCO <sub>3</sub> |
| Calcium Hardness                |      | mg/l as CaCO <sub>3</sub> |                               |
| Magnesium Hardness              |      | mg/l as CaCO <sub>3</sub> |                               |
| Total Alkalinity                |      | mg/l as CaCO <sub>3</sub> |                               |
| Phenolphthalein Alkalinity      |      | mg/l as CaCO <sub>3</sub> |                               |
| Carbonate (CaCO <sub>3</sub> )  |      | mg/l as CaCO <sub>3</sub> |                               |
| Bicarbonate (HCO <sub>3</sub> ) |      | mg/l as CaCO <sub>3</sub> |                               |
| Iron                            | 0.88 | mg/l                      | 0.3 mg/l                      |
| Chloride (as CL)                |      | mg/l                      | 250 mg/l                      |
| Sodium Chloride (as NaCL)       |      | mg/l                      |                               |
| Sulphate (as SO <sub>4</sub> )  |      | mg/l                      | 500 mg/l                      |
| Total Solids                    |      | mg/l                      | 1500 mg/l                     |
| Total Suspended Solids          |      | mg/l                      |                               |
| Total Dissolved Solids          |      | mg/l                      | 1000 mg/l                     |
| Manganese                       |      | mg/l                      | 0.05 mg/l                     |
| Phosphate                       |      | mg/l                      |                               |
| Phenolphthalein Acidity         |      | mg/l                      |                               |
| Methyl Orange Acidity           |      | mg/l                      |                               |
| Salinity                        |      | ppt                       |                               |

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

Zaw Hein Oo B.Sc (Chemistry)

Approved by

Signature:

Name:

Thinzar Theint Theint

B.F. (Civil)

Assistant Technical Officer
ISO Tech Laboratory

(a division of WEG Co., Ltd.) SO Tach Laboratory







WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012

Issue No - 1.0/Page 2 of 2

Laboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

#### W0824 167

#### WATER QUALITY TEST RESULTS FORM

| Client                                  | Shwe Taung Cement                |
|-----------------------------------------|----------------------------------|
| Nature of Water                         | ဆည်ရေ                            |
| Location                                | ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။ |
| Date and Time of collection             | 6.8.2024 (10:30 AM)              |
| Date and Time of arrival at Laboratory  | 7.8.2024                         |
| Date and Time of commencing examination | 8.8.2024                         |
| Date and Time of completing             | 9.8.2024                         |

#### Results of Water Analysis

#### WHO Drinking Water Guideline (Geneva - 1993)

| Temperature (°C)                                  |       | °C   |           |
|---------------------------------------------------|-------|------|-----------|
| Fluoride (F)                                      | 0.4   | mg/l | 1.5 mg/l  |
| Lead (as Pb)                                      |       | mg/l | 0.01 mg/l |
| Arsenic (As)                                      | 0.005 | mg/l | 0.01 mg/l |
| Nitrate (N.NO <sub>3</sub> )                      |       | mg/l | 50 mg/l   |
| Chlorine (Residual)                               | Nil   | mg/l |           |
| Ammonia Nitrogen (NH <sub>3</sub> )               | 0.15  | mg/l |           |
| Ammonium Nitrogen (NH <sub>4</sub> )              |       | mg/l |           |
| Dissolved Oxygen (DO)                             |       | mg/l |           |
| Chemical Oxygen Demand (COD)                      |       | mg/l |           |
| Biochemical Oxygen Demand (BOD) (5 days at 20 °C) |       | mg/l |           |
| Cyanide (CN)                                      | 0.011 | mg/l | 0.07 mg/l |
| Zinc (Zn)                                         |       | mg/l | 3 mg/l    |
| Copper (Cu)                                       | Nil   | mg/l | 2 mg/l    |
| Silica (SiO <sub>2</sub> )                        |       | mg/l |           |

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

Sr.Chemist

Approved by

Signature:

Name:

Thinzar Theint Theint B.E (Civil) Assistant Technical Officer

ISO Tech Laboratory





**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-6) (Sedimentation Pond 5 Water Results)



### **Lab & Quality Control Department**

#### Waste Water Test Report

Nature of water

Surface Water

Location

Beside 103 & 501 Area

Date of sample collection Date of sample examination 13.05.2024 14.05.2024

Date of completing

20.05.2024



| Description of Analysis       | Analysis Results  | IFC Waste Water Guideline | Remark      |
|-------------------------------|-------------------|---------------------------|-------------|
| рН —                          | 7.7               | 6-9                       |             |
| Chemical Oxygen Demand(COD)   | 68 mg/L           | 0-125mg/L                 | 200         |
| Biologycal Oxygen Demand(BOD) | 43 mg/L           | 0-30mg/L                  | 52 TANKO SI |
| Total Suspended Solid(TSS)    | 130 mg/L          | Max 50mg/L                |             |
| Total Nitrogen                | Non Determination | 10mg/L                    | Can't Test  |
| Total Nitrate                 | Non Determination | 44.29mg/L                 | Can't Test  |
| Total Phosphorous             | 0.2 mg/L          | 2mg/L                     |             |
| Oil & Grease                  | Non Determination | 10 mg/L                   | Can't Test  |

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader Lab & QC Department



# **Lab & Quality Control Department**

#### **Waste Water Test Report**

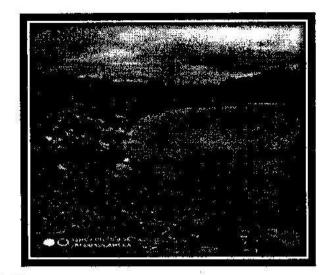
Nature of water

**Surface Water** 

Location

Beside 103 & 501 Area

Date of sample collection


14.06.2024

Date of sample examination

14.06.2024

Date of completing

22.06.2024



| Description of Analysis       | <b>Analysis Results</b> | IFC Waste Water Guideline | Remark     |
|-------------------------------|-------------------------|---------------------------|------------|
| рН                            | 8                       | 6-9                       |            |
| Chemical Oxygen Demand(COD)   | 96 mg/L                 | 0-125mg/L                 |            |
| Biologycal Oxygen Demand(BOD) | 13 mg/L                 | 0-30mg/L                  |            |
| Total Suspended Solid(TSS)    | 99 mg/L                 | Max 50mg/L                |            |
| Total Nitrogen                | 1.65mg/L                | 10mg/L                    |            |
| Total Nitrate                 | 7.3 mg/L                | 44.29mg/L                 | N 22 N     |
| Total Phosphorous             | 0.2 mg/L                | 2mg/L                     |            |
| Oil & Grease                  | Non Determination       | 10 mg/L                   | Can't Test |

Tested by,

Han Ko Win

Chemist
Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department



# **Lab & Quality Control Department**

### **Waste Water Test Report**

Nature of water

**Surface Water** 

Location

Beside 103 & 501 Area

Date of sample collection

15.07.2024

Date of sample examination

16.07.2024

Date of completing

24.07.2024



| Description of Analysis       | Analysis Results  | IFC Waste Water Guideline | Remark     |
|-------------------------------|-------------------|---------------------------|------------|
| рН                            | 8.3               |                           | - HELITAIN |
| Chemical Oxygen Demand(COD)   | 93 mg/L           | 6-9                       |            |
| Biologycal Oxygen Demand(BOD) | 26 mg/L           | 0-125mg/L                 |            |
| Total Suspended Solid(TSS) .  |                   | 0-30mg/L                  |            |
| Total Phosphorous             | 87 mg/L           | Max 50mg/L                |            |
| Oil & Grease                  | 0.2 mg/L          | 2mg/L                     |            |
| on a dicase                   | Non Determination | 10 mg/L                   | Can't Test |

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

Team Leader

Lab & QC Department



# **Lab & Quality Control Department**

### **Waste Water Test Report**

Nature of water

Location

Date of sample collection Date of sample examination

**Date of completing** 


**Surface Water** 

Beside 103 & 501 Area

07.08.2024

08.08.2024

10.08.2024



| Description of Analysis     | <b>Analysis Results</b> | IFC Waste Water Guideline |  |  |  |  |
|-----------------------------|-------------------------|---------------------------|--|--|--|--|
| рН                          | 8.1                     | 6-9                       |  |  |  |  |
| Chemical Oxygen Demand(COD) | 60 mg/L                 | 0-125mg/L                 |  |  |  |  |
| Total Suspended Solid(TSS)  | 48 mg/L                 | Max 50mg/L                |  |  |  |  |
| Total Phosphorous           | 0.3 mg/L                | 2mg/L                     |  |  |  |  |
| Total Nitrogen              | 2.05 mg/L               | 10mg/L                    |  |  |  |  |
| Total Nitrate               | 9.1 mg/L                | 44.29mg/L                 |  |  |  |  |

Tested by,

Han Ko Win Chemist Lab & QC Department Shwe Taung Cement Co., Ltd. Approved By,

Ye' Naing Soe Team Leader

Lab & QC Department Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

## **Waste Water Test Report**

**Nature of water** 

Location

**Surface Water** 

Beside 103 & 501 Area

Date of sample collection

Date of sample examination

16.09.2024

16.09.2024

**Date of completing** 

20.09.2024



| Description of Analysis     | Analysis Results  | IFC Waste Water Guideline |  |  |  |  |  |
|-----------------------------|-------------------|---------------------------|--|--|--|--|--|
| pH ,                        | 8.1               | 6-9                       |  |  |  |  |  |
| Chemical Oxygen Demand(COD) | 55 mg/L           | 0-125mg/L                 |  |  |  |  |  |
| Total Suspended Solid(TSS)  | 28 mg/L           | Max 50mg/L                |  |  |  |  |  |
| Total Phosphorous           | 0.3 mg/L          | 2 mg/L                    |  |  |  |  |  |
| Total Nitrogen              | 2- <b>7</b> 5mg/L | 10mg/L                    |  |  |  |  |  |
| Total Nitrate               | 12.2 mg/L         | 44.29mg/L                 |  |  |  |  |  |

Tested by,

Han Ko Win Chemist **Lab & QC Department Shwe Taung Cement Co., Ltd.**  Approved By

Ye' Naing Soe **Team Leader** 

**Lab & QC Department** 

**Shwe Taung Cement Co., Ltd.** 



# **Lab & Quality Control Department**

# **Waste Water Test Report**

**Nature of water** 

Location

Date of sample collection

Date of sample examination

**Date of completing** 

**Surface Water** 

Beside 103 & 501 Area

24.10.2024

25.10.2024

26.10.2024



| Description of Analysis     | Analysis Results | IFC Waste Water Guideline |
|-----------------------------|------------------|---------------------------|
| pH ,                        | 8.2              | 6-9                       |
| Chemical Oxygen Demand(COD) | 12 mg/L          | 0-125mg/L                 |
| Total Suspended Solid(TSS)  | 18 mg/L          | Max 50mg/L                |
| Total Phosphorous           | 0.1 mg/L         | 2 mg/L                    |
| Total Nitrogen              | 1.78 mg/L        | 10mg/L                    |
| Total Nitrate               | 7.9 mg/L         | 44.29mg/L                 |

Tested by,

PO

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department

Shwe Taung Cement Co., Ltd.



### SHWE TAUNG MINING COMPANY LIMITED



**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (B-7) (Sedimentation Pond 6 Water Results)



# **Lab & Quality Control Department**

### **Waste Water Test Report**

Nature of water

**Surface Water** 

Location

Infront of Main Office

Date of sample collection

13.05.2024

Date of sample examination

14.05.2024

Date of completing

20.05.2024



| Description of Analysis       | Analysis Results  | IFC Waste Water Guideline | Remark                                  |
|-------------------------------|-------------------|---------------------------|-----------------------------------------|
| рН                            | 8.7               | 6-9                       | 7 - 40                                  |
| Chemical Oxygen Demand(COD)   | 119 mg/L          | 0-125mg/L                 | *************************************** |
| Biologycal Oxygen Demand(BOD) | 78 mg/L           | 0-30mg/L                  |                                         |
| Total Suspended Solid(TSS)    | 72 mg/L           | Max 50mg/L                | 1.0A 2000                               |
| Total Nitrogen                | 0 mg/L            | 10mg/L                    |                                         |
| Total Nitrate                 | 0 mg/L            | 44.29mg/L                 |                                         |
| Total Phosphorous             | 0.2 mg/L          | 2mg/L                     | V-100                                   |
| Oil & Grease                  | Non Determination | 10 mg/L                   | Can't Test                              |

Tested by,

O.

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

### **Waste Water Test Report**

Nature of water

**Surface Water** 

Location

Infront of Main Office

Date of sample collection

14.06.2024

Date of sample examination

14.06.2024

Date of completing

22.06.2024



| <b>Description of Analysis</b> | <b>Analysis Results</b> | IFC Waste Water Guideline | Remark     |
|--------------------------------|-------------------------|---------------------------|------------|
| рН                             | 8.4                     | 6-9                       |            |
| Chemical Oxygen Demand(COD)    | 37 mg/L                 | 0-125mg/L                 |            |
| Biologycal Oxygen Demand(BOD)  | 16 mg/L                 | 0-30mg/L                  |            |
| Total Suspended Solid(TSS)     | 38 mg/L                 | Max 50mg/L                |            |
| Total Nitrogen                 | 0.69 mg/L               | 10mg/L                    |            |
| Total Nitrate                  | 3.1 mg/L                | 44.29mg/L                 |            |
| Total Phosphorous              | 0.2 mg/L                | 2mg/L                     |            |
| Oil & Grease                   | Non Determination       | 10 mg/L                   | Can't Test |

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

ye' Naing Soe

Team Leader

Lab & QC Department

Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

# **Waste Water Test Report**

Nature of water

**Surface Water** 

Infront of Main Office

Location

Date of sample collection Date of sample examination

15.07.2024

16.07.2024

Date of completing

24.07.2024



| Description of Analysis       | Analysis Results  | IFC Waste Water Guideline | Remark     |
|-------------------------------|-------------------|---------------------------|------------|
| На                            | 8.5               | 6-9                       |            |
| Chemical Oxygen Demand(COD)   | 36 mg/L           |                           |            |
| Biologycal Oxygen Demand(BOD) | 15 mg/L           | 0-125mg/L                 |            |
| Total Suspended Solid(TSS) .  | 39 mg/L           | 0-30mg/L                  |            |
| Total Phosphorous             |                   | Max 50mg/L                |            |
| Oil & Grease                  | 0.3 mg/L          | 2mg/L                     |            |
|                               | Non Determination | 10 mg/L                   | Can't Test |

Tested by,

Han Ko Win

Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

**Team Leader** 

Lab & QC Department

Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

## **Waste Water Test Report**

Nature of water

Surface Water

Location

Infront of Main Office

Date of sample collection

05.08.2024

Date of sample examination

05.08.2024

**Date of completing** 

08.08.2024



| <b>Description of Analysis</b> | Analysis Results   | IFC Waste Water Guideline<br>6-9 |  |  |  |  |
|--------------------------------|--------------------|----------------------------------|--|--|--|--|
| рН                             | 8.7                |                                  |  |  |  |  |
| Chemical Oxygen Demand(COD)-   | 14 mg/L            | 0-125mg/L                        |  |  |  |  |
| Total Suspended Solid(TSS)     | 37 mg/L            | Max 50mg/L                       |  |  |  |  |
| Total Phosphorous              | 0.3 mg/L           | 2mg/L                            |  |  |  |  |
| Total Nitrogen                 | 1.6 mg/L           | 10mg/L                           |  |  |  |  |
| Total Nitrate                  | 7.5 mg/L           | 44.29mg/L                        |  |  |  |  |
| E-Coli                         | 180 (CFU/100)ml    | 0(CFU/100)ml                     |  |  |  |  |
| Coliform                       | 154646 (CFU/100)ml | 0(CFU/100)ml                     |  |  |  |  |

Tested by,

()

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

# **Waste Water Test Report**

Nature of water

Location

Date of sample collection

Date of sample examination

**Date of completing** 

**Surface Water** 

**Infront of Main Office** 

16.09.2024

16.09.2024

20.09.2024



| Description of Analysis     | Analysis Results | IFC Waste Water Guideline |  |  |  |  |  |
|-----------------------------|------------------|---------------------------|--|--|--|--|--|
| pH ·                        | 10.1             | 6-9                       |  |  |  |  |  |
| Chemical Oxygen Demand(COD) | 45 mg/L          | 0-125mg/L                 |  |  |  |  |  |
| Total Suspended Solid(TSS)  | 255 mg/L         | Max 50mg/L                |  |  |  |  |  |
| Total Phosphorous           | 0.2 mg/L         | 2 mg/L                    |  |  |  |  |  |
| Total Nitrogen              | q 4 mg/L         | 10mg/L                    |  |  |  |  |  |
| Total Nitrate               | 2-17 mg/L        | 44.29mg/L                 |  |  |  |  |  |

Tested by,

2

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By, Ton

Ye' Naing Soe Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.



# **Lab & Quality Control Department**

# **Waste Water Test Report**

**Nature of water** 

Location

Date of sample collection

Date of sample examination

**Date of completing** 


**Surface Water** 

Infront of Main Office

24.10.2024

25.10.2024

26.10.2024



| <b>Description of Analysis</b> | Analysis Results | IFC Waste Water Guideline |
|--------------------------------|------------------|---------------------------|
| pH ·                           | 10               | 6-9                       |
| Chemical Oxygen Demand(COD)    | 5 mg/L           | 0-125mg/L                 |
| Total Suspended Solid(TSS)     | 139 mg/L         | Max 50mg/L                |
| Total Phosphorous              | 0.0 mg/L         | 2 mg/L                    |
| Total Nitrogen                 | 2.37 mg/L        | 10mg/L                    |
| Total Nitrate                  | 10.5 mg/L        | 44.29mg/L                 |

Tested by,

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department

Shwe Taung Cement Co., Ltd.



### SHWE TAUNG MINING COMPANY LIMITED



**Bi-Annual Environmental Monitoring Report** 

# APPENDIX- C Ambient Air Quality Results



### SHWE TAUNG MINING COMPANY LIMITED



**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (C-1) Ambient Air Quality Results of Worker Accommodation



Record Cnt 1440

07-05-2024

Start Date 10:39:00 AM

End Date 08-05-2024

10:38:00 AM

|                  | 10.50        | D.OO AIVI |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|------------------|--------------|-----------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                  | PMA<br>ug/m3 |           | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave              | 28.6951      | 7.07361   | 0          | .185847   | 43.6729    | 31.3437   | 7.97638    | 0          | 54.1347 | 27.4           | 206.736      | 1.29131     | 10.1875 | 0 | 0 | 0 | 0 |   |
| Max              | 83           | 65        | 0          | .42       | 113        | 66        | 46         | 0          | 100     | 34             | 359          | 6.3         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min              | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 26      | 21             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS             | 28,6951      | 7.07361   | 0          | .185847   | 43.6729    | 31.3437   | 7.97638    | 0          | 54.1347 | 27.4           | 206.736      | 1.29131     | 10.1875 | 0 | 0 | 0 | 0 |   |
| 919217           | 83           | 65        | 0          | .42       | 113        | 66        | 46         | 0          | 100     | 34             | 359          | 6.3         | 10.5    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 26      | 21             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 | I |
| Daily            | 28.5655      | 10.5867   | 0          | .186754   | 28.5593    | 27.4382   | 13,7091    | 0          | 39.5093 | 29.9787        | 208.375      | 2.07103     | 10,2340 | 0 | 0 | 0 | 0 | 1 |
| Fri, Jul 5, 2024 | 83           | 65        | 0          | .42       | 111        | 66        | 46         | 0          | 69      | 34             | 359          | 6.3         | 10.5    | 0 | 0 | 0 | 0 | 4 |
| , ,              | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 26      | 24             | 1            | 0           | 9.9     | 0 | 0 | 0 | 0 |   |
| Ave Period 24    | 28.5655      | 10.5867   | 0          | .186754   | 28.5593    | 27.4382   | 13,7091    | 0          | 39.5093 | 29.9787        | 208.375      | 2.07103     | 10.2340 | 0 | 0 | 0 | 0 | Ī |
| 05-07-2024 11:59 | 83           | 65        | 0          | .42       | 111        | 66        | 46         | 0          | 69      | 34             | 359          | 6.3         | 10.5    | 0 | 0 | 0 | 0 |   |
|                  | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 26      | 24             | 1            | 0           | 9.9     | 0 | 0 | 0 | 0 |   |
| Daily            | 28.8575      | 2.66979   | 0          | .184710   | 62.6181    | 36.2394   | .790297    | 0          | 72.4679 | 24.1674        | 204.682      | .313928     | 10.1292 | 0 | 0 | 0 | 0 | ĺ |
| Mon, Aug 5, 2024 | 56           | 11        | 0          | .38       | 113        | 60        | 11         | 0          | 100     | 32             | 357          | 4.7         | 10.3    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 31      | 21             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| Ave Period 24    | 28.8575      | 2.66979   | 0          | .184710   | 62.6181    | 36.2394   | .790297    | 0          | 72.4679 | 24.1674        | 204.682      | .313928     | 10.1292 | 0 | 0 | 0 | 0 | ĺ |
| 05-08-2024 10:38 | 56           | 11        | 0          | .38       | 113        | 60        | 11         | 0          | 100     | 32             | 357          | 4.7         | 10.3    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1         | 0          | 0         | 2          | 1         | 0          | 0          | 31      | 21             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
|                  |              |           |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |

Report Main Preferences Header Data



Record Cnt 1440

19-06-2024

**Start Date** 3:05:00 PM

End Date 20-06-2024

|                   | 3:04:0       | 01 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 13.8638      | 6.56388 | .006944    | .077576   | 18.2666    | 12.1326   | 3.72013    | 0          | 79.825  | 26.925         | 155.627      | .692847     | 10.3130 | 0 | 0 | 0 | 0 |   |
| Max               | 104          | 105     | 3          | .52       | 60         | 33        | 38         | 0          | 100     | 33             | 335          | 7.5         | 10.6    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 24             | 5            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS              | 13.8638      | 6.56388 | .006944    | .077576   | 18.2666    | 12.1326   | 3.72013    | 0          | 79.825  | 26.925         | 155.627      | .692847     | 10.3130 | 0 | 0 | 0 | 0 | 1 |
| 919217            | 104          | 105     | 3          | .52       | 60         | 33        | 38         | 0          | 100     | 33             | 335          | 7.5         | 10.6    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 24             | 5            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Daily             | 25.0635      | 14.4579 | 0          | .090728   | 12,3289    | 10.1757   | 9.13457    | 0          | 77      | 27.2635        | 155.743      | .860747     | 10.4078 | 0 | 0 | 0 | 0 | ı |
| Wed, Jun 19, 2024 | 104          | 105     | 0          | .52       | 55         | 32        | 38         | 0          | 100     | 33             | 262          | 6.1         | 10.6    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 50      | 24             | 72           | 0           | 9.9     | 0 | 0 | 0 | 0 | 1 |
| Ave Period 24     | 25.0635      | 14.4579 | 0          | .090728   | 12.3289    | 10.1757   | 9.13457    | 0          | 77      | 27.2635        | 155.743      | .860747     | 10.4078 | 0 | 0 | 0 | 0 | I |
| 19-06-2024 11:59  | 104          | 105     | 0          | .52       | 55         | 32        | 38         | 0          | 100     | 33             | 262          | 6.1         | 10.6    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 50      | 24             | 72           | 0           | 9.9     | 0 | 0 | 0 | 0 | 1 |
| Daily             | 7.24309      | 1.89723 | .011049    | .069801   | 21.7767    | 13.2895   | .519337    | 0          | 81.4950 | 26.7248        | 155.559      | .593591     | 10.2570 | 0 | 0 | 0 | 0 | Ī |
| Thu, Jun 20, 2024 | 41           | 15      | 3          | .31       | 60         | 33        | 12         | 0          | 100     | 32             | 335          | 7.5         | 10.5    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 24             | 5            | 0           | 9.7     | 0 | 0 | 0 | 0 | 1 |
| Ave Period 24     | 7.24309      | 1.89723 | .011049    | .069801   | 21.7767    | 13.2895   | .519337    | 0          | 81.4950 | 26.7248        | 155.559      | .593591     | 10.2570 | 0 | 0 | 0 | 0 | ĺ |
| 20-06-2024        | 41           | 15      | 3          | .31       | 60         | 33        | 12         | 0          | 100     | 32             | 335          | 7.5         | 10.5    | 0 | 0 | 0 | 0 |   |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 24             | 5            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |

Report Main Preferences Header Data



Record Cnt 1440

End Date 05-07-2024

4.20.00 DM

**Environmental Report** 04-07-2024 **Start Date** 4:29:00 PM

|                  | 4:28:0       | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                  | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave              | 14.4958      | 5.18263 | 20.7930    | .072729   | 23.1347    | 13.4055   | 1.19444    | .000347    | 83.7319 | 26.1659        | 153.636      | .652569     | 10.1354 | 0 | 0 | 0 | 0 |   |
| Max              | 79           | 59      | 83         | .37       | 62         | 33        | 16         | .13        | 100     | 32             | 359          | 7.6         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min              | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 46      | 23             | 5            | 0           | 9.6     | 0 | 0 | 0 | 0 |   |
| EPAS             | 14.4958      | 5.18263 | 20.7930    | .072729   | 23.1347    | 13.4055   | 1.19444    | .000347    | 83.7319 | 26.1659        | 153.636      | .652569     | 10.1354 | 0 | 0 | 0 | 0 | ı |
| 919217           | 79           | 59      | 83         | .37       | 62         | 33        | 16         | .13        | 100     | 32             | 359          | 7.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 46      | 23             | 5            | 0           | 9.6     | 0 | 0 | 0 | 0 | ı |
| Daily            | 26.2727      | 10.9157 | 17.1596    | .100776   | 26.1130    | 16.3569   | 2.88248    | .001108    | 89.8957 | 25.1596        | 190.337      | 1.38603     | 10,2203 | 0 | 0 | 0 | 0 | ı |
| Sun, Apr 7, 2024 | 79           | 59      | 69         | .37       | 62         | 33        | 16         | .13        | 100     | 30             | 325          | 7.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 57      | 23             | 27           | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24    | 26.2727      | 10.9157 | 17.1596    | .100776   | 26.1130    | 16.3569   | 2.88248    | .001108    | 89.8957 | 25.1596        | 190.337      | 1.38603     | 10.2203 | 0 | 0 | 0 | 0 | Ī |
| 07-04-2024 11:59 | 79           | 59      | 69         | .37       | 62         | 33        | 16         | .13        | 100     | 30             | 325          | 7.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 57      | 23             | 27           | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Daily            | 9.12537      | 2.56825 | 22.4499    | .059939   | 21.7765    | 12.0596   | .424671    | 0          | 80.9211 | 26.6248        | 136.900      | .318099     | 10.0967 | 0 | 0 | 0 | 0 | Ī |
| Tue, May 7, 2024 | 42           | 14      | 83         | .29       | 57         | 31        | 15         | 0          | 100     | 32             | 359          | 3.6         | 10.3    | 0 | 0 | 0 | 0 | ı |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 46      | 23             | 5            | 0           | 9.6     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24    | 9.12537      | 2.56825 | 22.4499    | .059939   | 21.7765    | 12.0596   | .424671    | 0          | 80.9211 | 26.6248        | 136.900      | .318099     | 10.0967 | 0 | 0 | 0 | 0 | I |
| 07-05-2024 04:28 | 42           | 14      | 83         | .29       | 57         | 31        | 15         | 0          | 100     | 32             | 359          | 3.6         | 10.3    | 0 | 0 | 0 | 0 | ı |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 46      | 23             | 5            | 0           | 9.6     | 0 | 0 | 0 | 0 | 1 |
|                  |              |         |            |           |            |           |            |            |         |                |              |             |         |   |   | _ | _ |   |



Record Cnt 1440

13-08-2024

Start Date 4:48:00 PM

End Date 14-08-2024

| Liid Dat               |              | 00 PM   |            |           |            |           |            |            |      |                |              |             |         |   |          |   |   |   |
|------------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|------|----------------|--------------|-------------|---------|---|----------|---|---|---|
|                        | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH % | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |          |   |   |   |
| Ave                    | 8.0875       | 3.28402 | 0          | .076375   | 40.3673    | 22.9826   | .118055    | .005236    | 100  | 23.5083        | 163.75       | .008611     | 10.2427 | 0 | 0        | 0 | 0 |   |
| Max                    | 26           | 14      | 0          | .42       | 141        | 51        | 14         | .19        | 100  | 25             | 256          | .8          | 10.5    | 0 | 0        | 0 | 0 |   |
| Min                    | 2            | 1       | 0          | 0         | 2          | 5         | 0          | 0          | 100  | 23             | 82           | 0           | 9.7     | 0 | 0        | 0 | 0 |   |
| EPAS                   | 8.0875       | 3.28402 | 0          | .076375   | 40.3673    | 22.9826   | .118055    | .005236    | 100  | 23.5083        | 163.75       | .008611     | 10.2427 | 0 | 0        | 0 | 0 | I |
| 919217                 | 26           | 14      | 0          | .42       | 141        | 51        | 14         | .19        | 100  | 25             | 256          | .8          | 10.5    | 0 | 0        | 0 | 0 | 1 |
|                        | 2            | 1       | 0          | 0         | 2          | 5         | 0          | 0          | 100  | 23             | 82           | 0           | 9.7     | 0 | 0        | 0 | 0 | 1 |
|                        |              |         | -          | -         | •<br>•     | -<br>-    | -          |            | -    |                |              | <u>-</u>    | •<br>-  |   | <u>-</u> | - | - |   |
| Daily                  | 10.4027      | 4.57638 | 0          | .083148   | 55.9467    | 29.9884   | .393518    | .005231    | 100  | 23.4143        | 230.344      | .000462     | 10.3402 | 0 | 0        | 0 | 0 | 1 |
| Tue, Aug 13, 2024      |              | 14      | 0          | .42       | 69         | 36        | 14         | .19        | 100  | 24             | 256          | .1          | 10.5    | 0 | 0        | 0 | 0 | 1 |
|                        | 2            | 1       | 0          | 0         | 44         | 23        | 0          | 0          | 100  | 23             | 172          | 0           | 9.9     | 0 | 0        | 0 | 0 | ı |
| Ave Period 24          | 10.4027      | 4.57638 | 0          | .083148   | 55.9467    | 29.9884   | .393518    | .005231    | 100  | 23.4143        | 230.344      | .000462     | 10.3402 | 0 | 0        | 0 | 0 | I |
| 13-08-2024 11:59       | 26           | 14      | 0          | .42       | 69         | 36        | 14         | .19        | 100  | 24             | 256          | .1          | 10.5    | 0 | 0        | 0 | 0 | 1 |
|                        | 2            | 1       | 0          | 0         | 44         | 23        | 0          | 0          | 100  | 23             | 172          | 0           | 9.9     | 0 | 0        | 0 | 0 | 1 |
| Daily                  | 7.09523      | 2.73015 | 0          | .073472   | 33.6904    | 19.9801   | 0          | .005238    | 100  | 23.5486        | 135.209      | .012103     | 10.2009 | 0 | 0        | 0 | 0 | i |
| Wed, Aug 14, 2024      | 17           | 11      | 0          | .22       | 141        | 51        | 0          | .13        | 100  | 25             | 220          | .8          | 10.5    | 0 | 0        | 0 | 0 | 1 |
| <b>3</b> · · · , – · · | 2            | 1       | 0          | 0         | 2          | 5         | 0          | 0          | 100  | 23             | 82           | 0           | 9.7     | 0 | 0        | 0 | 0 | 1 |
| Ave Period 24          | 7.09523      | 2.73015 | 0          | .073472   | 33.6904    | 19.9801   | 0          | .005238    | 100  | 23.5486        | 135.209      | .012103     | 10.2009 | 0 | 0        | 0 | 0 | Ì |
| 14-08-2024 04:47       | 17           | 11      | 0          | .22       | 141        | 51        | 0          | .13        | 100  | 25             | 220          | .8          | 10.5    | 0 | 0        | 0 | 0 | 1 |
|                        | 2            | 1       | 0          | 0         | 2          | 5         | 0          | 0          | 100  | 23             | 82           | 0           | 9.7     | 0 | 0        | 0 | 0 | 1 |
|                        |              |         |            |           |            |           |            |            |      |                |              |             |         |   |          |   |   |   |

Main Header Data Report **Preferences** 



Record Cnt 1440

**EPAS** 

919217

Daily

Daily

Ave Period 24

25-09-2024 08:26

24-09-2024

**Start Date** 8:27:00 AM

25-09-2024 **End Date** 

6.53846

26

2

2.19132

10

0

0

0

.092662

.17

.05

43.2090

128

15

23.9546

52

9

0

0

0

.003451

.14

0

99.9901

100

95

8:26:00 AM

**PMA** CO<sub>2</sub> NO2 SO2 PrpM RH % CO O3 TmpC WDir WSpd Pwr V ug/m3 Deg. C Deg. ppb ppb ppb mph ppm ppm mm 12,0486 5.72430 0 24,4354 2.19513 24,4395 180,243 Ave .092034 38,2958 .010708 93,9104 .273680 10.3313 0 0 87 30 Max 53 403 60 .48 100 360 8.6 10.7 0 .34 140 Min 2 2 0 23 0 1 0 56 0 0 0 0 0 0 9,6 12,0486 5,72430 24.4395 .273680 .092034 38,2958 24,4354 2,19513 .010708 93.9104 180,243 10,3313 0 87 53 0 0 0 0 .34 403 60 .48 30 360 8.6 10.7 0 140 100 2 23 0 0 56 0 0 9.6 15.0428 7.64415 .091693 35.6259 24.6966 3.38799 .014651 90.6066 25.1339 162,297 .421972 10,4133 0 0 87 53 .34 403 140 60 .48 100 30 359 8.6 10.7 0 0 0 0 Tue, Sep 24, 2024 0 2 0 23 0 56 0 0 0 0 0 9.9 0 162.297 Ave Period 24 15.0428 7.64415 0 35.6259 24.6966 3.38799 .014651 90.6066 25.1339 .421972 10.4133 0 0 0 .091693 24-09-2024 11:59 87 53 403 140 60 .48 100 30 359 8.6 10.7 0 0 0 0 .34 2 2 0 0 56 23 0 0 0 0 9.9 0 0 6.53846 2.19132 .092662 43,2090 23.9546 0 .003451 99.9901 23,1617 213,268 .000788 10.1804 0 0 10 0 .14 26 360 26 .17 128 52 100 .1 10.3 0 0 0 0 Wed, Sep 25, 0 0 23 3 0 .05 15 0 95 9.6 0 0 0 0

213,268

360

3

.000788

.1

0

10.1804

10.3

9.6

0

0

0

0

0

0

0

0

0

0

0

0

23,1617

26

23



Record Cnt 1440

07-10-2024

Start Date 2:44:00 PM

End Date 08-10-2024

|                   | 2:43:0       | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 17.2104      | 7.06180 | .072916    | .070375   | 21.75      | 12.7437   | 1.66944    | 0          | 88.5583 | 24.7625        | 230.987      | .476527     | 10.1920 | 0 | 0 | 0 | 0 |   |
| Max               | 119          | 72      | 11         | .68       | 190        | 84        | 74         | 0          | 100     | 31             | 360          | 6.9         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS              | 17.2104      | 7.06180 | .072916    | .070375   | 21.75      | 12.7437   | 1.66944    | 0          | 88.5583 | 24.7625        | 230.987      | .476527     | 10.1920 | 0 | 0 | 0 | 0 | 1 |
| 919217            | 119          | 72      | 11         | .68       | 190        | 84        | 74         | 0          | 100     | 31             | 360          | 6.9         | 10.5    | 0 | 0 | 0 | 0 | 4 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 | I |
| Daily             | 18.6618      | 7.11690 | 0          | .079172   | 27.3758    | 15.7913   | 4.19604    | 0          | 90.3561 | 25.0197        | 263.334      | .454316     | 10,2458 | 0 | 0 | 0 | 0 | ı |
| Wed, Jul 10, 2024 | 72           | 36      | 0          | .68       | 190        | 84        | 74         | 0          | 100     | 31             | 360          | 4.4         | 10.5    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 61      | 23             | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 | 1 |
| Ave Period 24     | 18.6618      | 7.11690 | 0          | .079172   | 27.3758    | 15.7913   | 4.19604    | 0          | 90.3561 | 25.0197        | 263.334      | .454316     | 10.2458 | 0 | 0 | 0 | 0 | Ī |
| 10-07-2024 11:59  | 72           | 36      | 0          | .68       | 190        | 84        | 74         | 0          | 100     | 31             | 360          | 4.4         | 10.5    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 61      | 23             | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 | 1 |
| Daily             | 16.2975      | 7.02714 | .118778    | .064841   | 18.2115    | 10.8269   | .080316    | 0          | 87.4276 | 24.6006        | 210.642      | .490497     | 10.1581 | 0 | 0 | 0 | 0 | Ī |
| Sat, Aug 10, 2024 | 119          | 72      | 11         | .36       | 45         | 24        | 4          | 0          | 100     | 31             | 358          | 6.9         | 10.3    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 16.2975      | 7.02714 | .118778    | .064841   | 18.2115    | 10.8269   | .080316    | 0          | 87.4276 | 24.6006        | 210.642      | .490497     | 10.1581 | 0 | 0 | 0 | 0 | I |
| 10-08-2024 02:43  | 119          | 72      | 11         | .36       | 45         | 24        | 4          | 0          | 100     | 31             | 358          | 6.9         | 10.3    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | 1 |



### SHWE TAUNG MINING COMPANY LIMITED



**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (C-2) Ambient Air Quality Results of Pyi Nyaung Village



Record Cnt 1440

13-05-2024

Start Date 2:58:00 PM

End Date 14-05-2024

|                   | 2:57:0       | 00 PM   |            |           |            |           |            |            |      |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH % | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 40.6138      | 9.58125 | 0          | .242243   | 45.2638    | 13.2576   | 31.4291    | 0          | 0    | 0              | 172.690      | .214236     | 10.3421 | 0 | 0 | 0 | 0 |   |
| Max               | 104          | 73      | 0          | 1.5       | 115        | 35        | 89         | 0          | 0    | 0              | 360          | 2.8         | 10.6    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 0    | 0              | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 |   |
| EPAS              | 40.6138      | 9.58125 | 0          | .242243   | 45.2638    | 13.2576   | 31.4291    | 0          | 0    | 0              | 172.690      | .214236     | 10.3421 | 0 | 0 | 0 | 0 | ı |
| 919217            | 104          | 73      | 0          | 1.5       | 115        | 35        | 89         | 0          | 0    | 0              | 360          | 2.8         | 10.6    | 0 | 0 | 0 | 0 | L |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 0    | 0              | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Daily             | 55.2195      | 16.4483 | 0          | .297804   | 33.5571    | 10.2767   | 42.1457    | 0          | 0    | 0              | 185.241      | .087084     | 10.4640 | 0 | 0 | 0 | 0 | ı |
| Mon, May 13,      | 104          | 73      | 0          | 1.5       | 106        | 34        | 81         | 0          | 0    | 0              | 356          | 2.6         | 10.6    | 0 | 0 | 0 | 0 | ı |
|                   | 12           | 1       | 0          | 0         | 2          | 1         | 12         | 0          | 0    | 0              | 1            | 0           | 10      | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 55.2195      | 16.4483 | 0          | .297804   | 33.5571    | 10.2767   | 42.1457    | 0          | 0    | 0              | 185.241      | .087084     | 10.4640 | 0 | 0 | 0 | 0 | ı |
| 13-05-2024 11:59  | 104          | 73      | 0          | 1.5       | 106        | 34        | 81         | 0          | 0    | 0              | 356          | 2.6         | 10.6    | 0 | 0 | 0 | 0 | ı |
|                   | 12           | 1       | 0          | 0         | 2          | 1         | 12         | 0          | 0    | 0              | 1            | 0           | 10      | 0 | 0 | 0 | 0 | ı |
| Daily             | 31.7984      | 5.43652 | 0          | .208708   | 52.3296    | 15.0567   | 24.9610    | 0          | 0    | 0              | 165.115      | .290979     | 10.2685 | 0 | 0 | 0 | 0 | Ī |
| Tue, May 14, 2024 | 84           | 73      | 0          | .98       | 115        | 35        | 89         | 0          | 0    | 0              | 360          | 2.8         | 10.5    | 0 | 0 | 0 | 0 | L |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 0    | 0              | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 31.7984      | 5.43652 | 0          | .208708   | 52.3296    | 15.0567   | 24.9610    | 0          | 0    | 0              | 165,115      | .290979     | 10.2685 | 0 | 0 | 0 | 0 | ĺ |
| 14-05-2024 02:57  | 84           | 73      | 0          | .98       | 115        | 35        | 89         | 0          | 0    | 0              | 360          | 2.8         | 10.5    | 0 | 0 | 0 | 0 |   |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 0    | 0              | 0            | 0           | 9.9     | 0 | 0 | 0 | 0 |   |



Record Cnt 1440

13-06-2024

**Start Date** 11:28:00 AM

End Date 14-06-2024

11:27:00 AM

|                                   | 11.21                     | .UU AIVI                 |                    |                                     |                                  |                     |                           |                     |                             |                                   |                            |                            |                               |                    |                    |                    |                    |   |
|-----------------------------------|---------------------------|--------------------------|--------------------|-------------------------------------|----------------------------------|---------------------|---------------------------|---------------------|-----------------------------|-----------------------------------|----------------------------|----------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|---|
|                                   | PMA<br>ug/m3              |                          | CO2<br>ppm         | CO<br>ppm                           | NO2<br>ppb                       | O3<br>ppb           | SO2<br>ppb                | Prp <b>M</b><br>mm  | RH %                        | TmpC<br>Deg. C                    | WDir<br>Deg.               | WSpd<br>mph                | Pwr V                         |                    |                    |                    |                    |   |
| Ave                               | 7.83055                   | 2.74305                  | 0                  | .111361                             | 20.6805                          | 12.8548             | 10.4256                   | .001930             | 98.1868                     | 24.9833                           | 193.668                    | .024930                    | 10.3345                       | 0                  | 0                  | 0                  | 0                  |   |
| Max                               | 41                        | 20                       | 0                  | .45                                 | 43                               | 23                  | 30                        | .22                 | 100                         | 27                                | 359                        | 1.6                        | 10.6                          | 0                  | 0                  | 0                  | 0                  |   |
| Min                               | 2                         | 1                        | 0                  | 0                                   | 2                                | 1                   | 0                         | 0                   | 79                          | 24                                | 2                          | 0                          | 9.9                           | 0                  | 0                  | 0                  | 0                  |   |
| EPAS<br>919217                    | 7.83055<br>41             | 2.74305<br>20            | 0                  | .111361<br>.45                      | <b>20.6805</b>                   | 12.8548<br>23       | 10.4256<br>30             | .001930             | 98.1868<br>100              | <b>24.9833</b> 27                 | 193.668<br>359             | .024930<br>1.6             | 10.3345<br>10.6               | 0                  | 0                  | 0                  | 0                  | l |
|                                   | 2                         | 1                        | 0                  | 0                                   | 2                                | 1                   | 0                         | 0                   | 79                          | 24                                | 2                          | 0                          | 9.9                           | 0                  | 0                  | 0                  | 0                  | l |
| Daily<br>Thu, Jun 13, 2024        | 9.73936<br>41<br>2        | 3.68484<br>20<br>1       | <b>0</b><br>0<br>0 | .116861<br>.45<br>0                 | 16.7353<br>43<br>2               | 10.9242<br>23<br>1  | 16.0598<br>30<br>2        | .003031<br>.22<br>0 | <b>97.6768</b><br>100<br>79 | 25.4308<br>27<br>24               | 223.779<br>352<br>2        | .039627<br>1.6<br>0        | <b>10.4118</b><br>10.6<br>9.9 | 0<br>0<br>0        | <b>0</b><br>0<br>0 | 0<br>0<br>0        | <b>0</b><br>0<br>0 |   |
| Ave Period 24<br>13-06-2024 11:59 | 9.73936<br>41<br>2        | 3.68484<br>20<br>1       | <b>0</b><br>0<br>0 | .116861<br>.45<br>0                 | <b>16.7353</b> 43 2              | <b>10.9242</b> 23 1 | 16.0598<br>30<br>2        | .003031<br>.22<br>0 | <b>97.6768</b><br>100<br>79 | <b>25.4308</b><br><b>27</b><br>24 | <b>223.779</b><br>352<br>2 | .039627<br>1.6<br>0        | <b>10.4118</b><br>10.6<br>9.9 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | İ |
| Daily<br>Fri, Jun 14, 2024        | <b>5.74418</b><br>16<br>2 | 1.71366<br>8<br>1        | <b>0</b><br>0<br>0 | . <b>105348</b><br>. <b>39</b><br>0 | <b>24.9927</b><br>40<br>2        | 14.9651<br>23<br>1  | <b>4.26744</b><br>18<br>0 | .000726<br>.13<br>0 | <b>98.7441</b> 100 79       | <b>24.4941</b><br><b>27</b><br>24 | <b>160.755</b> 359 6       | . <b>008866</b><br>.8<br>0 | <b>10.25</b><br>10.5<br>9.9   | 0<br>0<br>0        | <b>0</b><br>0<br>0 | 0<br>0<br>0        | <b>0</b><br>0<br>0 |   |
| Ave Period 24<br>14-06-2024 11:27 | <b>5.74418</b> 16 2       | <b>1.71366</b><br>8<br>1 | <b>0</b><br>0<br>0 | .105348<br>.39<br>0                 | <b>24.9927</b><br><b>40</b><br>2 | <b>14.9651</b> 23 1 | <b>4.26744</b><br>18<br>0 | .000726<br>.13<br>0 | <b>98.7441</b><br>100<br>79 | <b>24.4941</b><br>27<br>24        | <b>160.755</b> 359 6       | <b>.008866</b><br>.8<br>0  | <b>10.25</b><br>10.5<br>9.9   | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 |   |
|                                   |                           |                          |                    |                                     |                                  |                     |                           |                     |                             |                                   |                            |                            |                               |                    |                    |                    |                    | _ |

Report Main Preferences Header Data



Record Cnt 1440

15-07-2024

Start Date 4:42:00 PM

End Date 16-07-2024

|                                   | 4:41:        | 01 PM   |               |           |            |           |            |            |         |                |              |             |         |        |     |     |     |   |
|-----------------------------------|--------------|---------|---------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|--------|-----|-----|-----|---|
|                                   | PMA<br>ug/m3 |         | CO2<br>ppm    | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |        |     |     |     |   |
| Ave                               | 17.8958      | 6.37083 | 32.3569       | .106111   | 32.5611    | 17.6243   | 3.57013    | 0          | 85.5902 | 26.4236        | 183.415      | .068541     | 10.2185 | 0      | 0   | 0   | 0   |   |
| Max                               | 84           | 57      | 93            | 1.36      | 81         | 41        | 56         | 0          | 100     | 33             | 358          | 2.8         | 10.5    | 0      | 0   | 0   | 0   |   |
| Min                               | 2            | 1       | 0             | 0         | 2          | 1         | 0          | 0          | 47      | 23             | 0            | 0           | 9.7     | 0      | 0   | 0   | 0   |   |
| EPAS                              | 17.8958      | 6.37083 | 32.3569       | .106111   | 32.5611    | 17.6243   | 3.57013    | 0          | 85.5902 | 26.4236        | 183.415      | .068541     | 10.2185 | 0      | 0   | 0   | 0   | I |
| 919217                            | 84           | 57      | 93            | 1,36      | 81         | 41        | 56         | 0          | 100     | 33             | 358          | 2.8         | 10.5    | 0      | 0   | 0   | 0   | 1 |
|                                   | 2            | 1       | 0             | 0         | 2          | 1         | 0          | 0          | 47      | 23             | 0            | 0           | 9.7     | 0      | 0   | 0   | 0   | ı |
| D. S.                             | 22.9863      | 5,64840 | 25.6643       | .139885   | 55.3105    | 29.6324   | 5.02283    | <b>l</b> 0 | 98.7899 | 25.1986        | 215.625      | .005022     | 10.2712 | l o l  | I ^ | I 0 | l o |   |
| Daily                             | 2.1          | 18      | 71            | .77       | 81         | 41        | 49         | 0          | 100     | 23,1900        | 357          | .3          | 10.2712 | 0<br>0 | 0   | 0   | 0   | 4 |
| Mon, Jul 15, 2024                 | 3            | 10      | 0             | 0         | 16         | 19        | 0          | 0          | 80      | 25             | 0            | 0           | 9.9     | 0      | 0   | 0   | 0   | 1 |
| Ave Deviced 04                    | _            |         |               |           |            |           |            |            |         |                |              |             |         |        |     |     |     | ł |
| Ave Period 24<br>15-07-2024 11:59 | 22,9863      | 5.64840 | 25.6643<br>71 | .139885   | 55.3105    | 29.6324   | 5.02283    | 0          | 98.7899 | 25.1986        | 215.625      | .005022     | 10.2712 | 0      | 0   | 0   | 0   | 1 |
| 13-07-2024 11.39                  | 84           | 18      |               | .77       | 81         | 41        | 49         | 0          | 100     | 27             | 357          | .3          | 10.5    | 0      | 0   | 0   | 0   | 1 |
|                                   | 3            | 1       | 0             | 0         | 16         | 19        | 0          | 0          | 80      | 25             | 0            | 0           | 9.9     | 0      | 0   | 0   | 0   | ı |
| Daily                             | 15.6706      | 6.68662 | 35.2824       | .091347   | 22.6167    | 12.3752   | 2.93512    | 0          | 79.8203 | 26.9590        | 169.336      | .096307     | 10.1955 | 0      | 0   | 0   | 0   | 1 |
| Tue, Jul 16, 2024                 | 84           | 57      | 93            | 1,36      | 58         | 30        | 56         | 0          | 100     | 33             | 358          | 2.8         | 10.3    | 0      | 0   | 0   | 0   | 4 |
|                                   | 2            | 1       | 0             | 0         | 2          | 1         | 0          | 0          | 47      | 23             | 0            | 0           | 9.7     | 0      | 0   | 0   | 0   | 1 |
| Ave Period 24                     | 15.6706      | 6.68662 | 35.2824       | .091347   | 22.6167    | 12.3752   | 2.93512    | 0          | 79.8203 | 26.9590        | 169.336      | .096307     | 10.1955 | 0      | 0   | 0   | 0   | Ī |
| 16-07-2024                        | 84           | 57      | 93            | 1.36      | 58         | 30        | 56         | 0          | 100     | 33             | 358          | 2.8         | 10.3    | 0      | 0   | 0   | 0   | 1 |
|                                   | 2            | 1       | 0             | 0         | 2          | 1         | 0          | 0          | 47      | 23             | 0            | 0           | 9.7     | 0      | 0   | 0   | 0   | 1 |
|                                   |              |         |               |           |            |           |            |            |         |                |              |             |         |        |     |     |     | • |

Main Report Header Preferences Data



Record Cnt 1440

Start Date 20-08-2024 2:55:00 PM

End Date 21-08-2024

| Environmen | tal Report | t |
|------------|------------|---|
|------------|------------|---|

|                     | 2:54:        | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |            |   |
|---------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|------------|---|
|                     | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |            |   |
| Ave                 | 19.1069      | 6.32847 | .010416    | .134868   | 17.5208    | 10.6847   | 4.20208    | 0          | 86.2312 | 26.5187        | 219.522      | .072013     | 9.97868 | 0 | 0 | 0 | 0          |   |
| Max                 | 260          | 78      | 6          | 1.61      | 48         | 26        | 56         | 0          | 100     | 31             | 358          | 1.7         | 10.3    | 0 | 0 | 0 | 0          |   |
| Min                 | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 24             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0          |   |
| EPAS                | 19.1069      | 6.32847 | .010416    | .134868   | 17.5208    | 10.6847   | 4.20208    | 0          | 86.2312 | 26.5187        | 219.522      | .072013     | 9.97868 | 0 | 0 | 0 | 0          | 1 |
| 919217              | 260          | 78      | 6          | 1.61      | 48         | 26        | 56         | 0          | 100     | 31             | 358          | 1.7         | 10.3    | 0 | 0 | 0 | 0          | 4 |
|                     | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 24             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0          | ı |
| Daily               | 33.0715      | 7,91926 | 0          | .200238   | 17.7229    | 11.5889   | 10.8532    | 0          | 86.8733 | 26.8972        | 215.310      | .032293     | 10,1383 | 0 | 0 | 0 | <b>l</b> 0 | 1 |
| Tue, Aug 20, 2024   |              | 40      | 0          | 1,61      | 48         | 26        | 56         | 0          | 100     | 30             | 257          | .7          | 10.3    | 0 | 0 | 0 | 0          | 4 |
| 1 de, 7 dg 20, 2024 | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 61      | 24             | 79           | 0           | 9.6     | 0 | 0 | 0 | 0          | 4 |
| Ave Period 24       | 33.0715      | 7.91926 | 0          | .200238   | 17.7229    | 11.5889   | 10.8532    | 0          | 86.8733 | 26.8972        | 215.310      | .032293     | 10.1383 | 0 | 0 | 0 | 0          | i |
| 20-08-2024 11:59    | 260          | 40      | 0          | 1.61      | 48         | 26        | 56         | 0          | 100     | 30             | 257          | .7          | 10.3    | 0 | 0 | 0 | 0          | 1 |
|                     | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 61      | 24             | 79           | 0           | 9.6     | 0 | 0 | 0 | 0          | 1 |
| Daily               | 10.6033      | 5.35977 | .016759    | .095061   | 17.3977    | 10.1340   | .151955    | 0          | 85.8402 | 26.2882        | 222.088      | .096201     | 9.88145 | 0 | 0 | 0 | 0          | i |
| Wed, Aug 21, 2024   | 103          | 78      | 6          | .58       | 44         | 25        | 9          | 0          | 100     | 31             | 358          | 1.7         | 10.2    | 0 | 0 | 0 | 0          | 4 |
|                     | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 24             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0          | 4 |
| Ave Period 24       | 10.6033      | 5.35977 | .016759    | .095061   | 17.3977    | 10.1340   | .151955    | 0          | 85.8402 | 26.2882        | 222.088      | .096201     | 9.88145 | 0 | 0 | 0 | 0          | Ī |
| 21-08-2024 02:54    | 103          | 78      | 6          | .58       | 44         | 25        | 9          | 0          | 100     | 31             | 358          | 1.7         | 10.2    | 0 | 0 | 0 | 0          | 4 |
|                     | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 24             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0          |   |
|                     |              |         |            |           |            |           |            |            |         |                |              |             |         |   |   |   |            |   |

Preferences Report Main Header Data



Record Cnt 1440

16-09-2024

Start Date 1:50:00 PM

| E             | nd Date  | 17 <b>-</b> 09<br>1:49:0 | -2024<br>00 PM |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|---------------|----------|--------------------------|----------------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|               |          | PMA<br>ug/m3             |                | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
|               | Ave      | 20.5881                  | 7.95486        | .600694    | .305631   | 16.0395    | 12.4736   | 7.48333    | .000701    | 87.7048 | 26.1229        | 150.584      | .031180     | 9.80569 | 0 | 0 | 0 | 0 |   |
|               | Max      | 317                      | 87             | 20         | 2.24      | 46         | 29        | 95         | .14        | 100     | 33             | 240          | 1.6         | 10      | 0 | 0 | 0 | 0 |   |
|               | Min<br>- | 2                        | 1              | 0          | 0         | 2          | 1         | 0          | 0          | 45      | 23             | 7            | 0           | 9.1     | 0 | 0 | 0 | 0 |   |
| EPAS          |          | 20.5881                  | 7.95486        | .600694    | .305631   | 16.0395    | 12.4736   | 7.48333    | .000701    | 87.7048 | 26.1229        | 150.584      | .031180     | 9.80569 | 0 | 0 | 0 | 0 | 1 |
| 919217        |          | 317                      | 87             | 20         | 2.24      | 46         | 29        | 95         | .14        | 100     | 33             | 240          | 1.6         | 10      | 0 | 0 | 0 | 0 | 1 |
|               |          | 2                        | 1              | 0          | 0         | 2          | 1         | 0          | 0          | 45      | 23             | 7            | 0           | 9.1     | 0 | 0 | 0 | 0 | I |
| Daily         |          | 31.2950                  | 11.8852        | .034426    | .360557   | 13.6032    | 10.8524   | 14.2983    | 0          | 85.9491 | 26.8245        | 143.080      | .042131     | 9.89721 | 0 | 0 | 0 | 0 | I |
| Mon, Sep 1    | 6, 2024  | 317                      | 53             | 2          | 2.24      | 46         | 29        | 95         | 0          | 100     | 33             | 240          | .8          | 10      | 0 | 0 | 0 | 0 | 4 |
|               |          | 2                        | 1              | 0          | 0         | 2          | 1         | 0          | 0          | 45      | 24             | 7            | 0           | 9.3     | 0 | 0 | 0 | 0 | ı |
| Ave Period    |          | 31.2950                  | 11.8852        | .034426    | .360557   | 13.6032    | 10.8524   | 14.2983    | 0          | 85.9491 | 26.8245        | 143.080      | .042131     | 9.89721 | 0 | 0 | 0 | 0 | I |
| 16-09-2024 11 | 1:59     | 317                      | 53             | 2          | 2.24      | 46         | 29        | 95         | 0          | 100     | 33             | 240          | .8          | 10      | 0 | 0 | 0 | 0 | 1 |
|               |          | 2                        | 1              | 0          | 0         | 2          | 1         | 0          | 0          | 45      | 24             | 7            | 0           | 9.3     | 0 | 0 | 0 | 0 |   |
| Daily         |          | 12.7192                  | 5.06626        | 1.01686    | .265265   | 17.8301    | 13.6650   | 2.47469    | .001216    | 88.9951 | 25.6072        | 156.1        | .023132     | 9.73843 | 0 | 0 | 0 | 0 | 1 |
| Tue, Sep 1    | 7, 2024  | 129                      | 87             | 20<br>0    | 1.3       | 43         | 28        | 51         | .14        | 100     | 32             | 229          | 1.6         | 10      | 0 | 0 | 0 | 0 | 4 |
|               |          | 2                        | 1              | U          | 0         | 2          | 1         | 0          | 0          | 57      | 23             | 57           | 0           | 9.1     | 0 | 0 | 0 | 0 | ı |
| Ave Period    |          | 12.7192                  | 5.06626        | 1.01686    | .265265   | 17.8301    | 13.6650   | 2.47469    | .001216    | 88.9951 | 25.6072        | 156.1        | .023132     | 9.73843 | 0 | 0 | 0 | 0 |   |
| 17-09-2024 01 | 1:49     | 129                      | 87             | 20         | 1.3       | 43         | 28        | 51         | .14        | 100     | 32             | 229          | 1.6         | 10      | 0 | 0 | 0 | 0 |   |
|               |          | 2                        | 1              | 0          | 0         | 2          | 1         | 0          | 0          | 57      | 23             | 57           | 0           | 9.1     | 0 | 0 | 0 | 0 |   |

Report Main Preferences Header Data



Record Cnt 1440

29-10-2024

**Start Date** 2:04:00 PM

End Date 30-10-2024

|                   | 2:03:        | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 28.7861      | 9.21319 | 10.1423    | .149784   | 35.6284    | 20.9173   | 12.2       | 0          | 82.8770 | 25.4902        | 255.794      | .058611     | 10.3369 | 0 | 0 | 0 | 0 |   |
| Max               | 145          | 108     | 66         | 1.5       | 85         | 45        | 104        | 0          | 100     | 34             | 356          | 1.6         | 10.9    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 44      | 21             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS              | 28.7861      | 9.21319 | 10.1423    | .149784   | 35.6284    | 20.9173   | 12.2       | 0          | 82.8770 | 25.4902        | 255.794      | .058611     | 10.3369 | 0 | 0 | 0 | 0 | ı |
| 919217            | 145          | 108     | 66         | 1.5       | 85         | 45        | 104        | 0          | 100     | 34             | 356          | 1.6         | 10.9    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 44      | 21             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Daily             | 43.4546      | 17.0318 | .835570    | .200721   | 41.5       | 24.8187   | 25.1023    | 0          | 84.1258 | 25.8825        | 259.954      | .061577     | 10.5129 | 0 | 0 | 0 | 0 | ı |
| Tue, Oct 29, 2024 | 132          | 84      | 25         | 1.5       | 85         | 45        | 88         | 0          | 100     | 33             | 313          | 1.5         | 10.9    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 22             | 245          | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 43.4546      | 17.0318 | .835570    | .200721   | 41.5       | 24.8187   | 25.1023    | 0          | 84.1258 | 25.8825        | 259.954      | .061577     | 10.5129 | 0 | 0 | 0 | 0 | ĺ |
| 29-10-2024 11:59  | 132          | 84      | 25         | 1.5       | 85         | 45        | 88         | 0          | 100     | 33             | 313          | 1.5         | 10.9    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 47      | 22             | 245          | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Daily             | 18.4277      | 3.69194 | 16.7144    | .113815   | 31.4822    | 18.1623   | 3.08886    | 0          | 81.9952 | 25.2132        | 252.856      | .056516     | 10.2126 | 0 | 0 | 0 | 0 | Ī |
| Wed, Oct 30, 2024 | 145          | 108     | 66         | 1.16      | 67         | 35        | 104        | 0          | 100     | 34             | 356          | 1.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 44      | 21             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 18.4277      | 3.69194 | 16.7144    | .113815   | 31.4822    | 18.1623   | 3.08886    | 0          | 81.9952 | 25.2132        | 252.856      | .056516     | 10.2126 | 0 | 0 | 0 | 0 | ı |
| 30-10-2024 02:03  | 145          | 108     | 66         | 1.16      | 67         | 35        | 104        | 0          | 100     | 34             | 356          | 1.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 44      | 21             | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | 1 |



### SHWE TAUNG MINING COMPANY LIMITED



**Bi-Annual Environmental Monitoring Report** 

# APPENDIX - (C-3) Ambient Air Quality Results of Ku Pyin Village



Record Cnt 1440

15-05-2024

Start Date 4:08:00 PM

End Date 16-05-2024

4:07:00 PM

|                   | 4:07:0       | )0 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 25.6277      | 10.9784 | 0          | .185854   | 34.2902    | 25.5513   | 28.9777    | 0          | 44.7861 | 31.2645        | 185.965      | .715069     | 10.22   | 0 | 0 | 0 | 0 |   |
| Max               | 136          | 64      | 0          | .56       | 93         | 51        | 93         | 0          | 80      | 38             | 359          | 8.6         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 20      | 25             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS              | 25,6277      | 10.9784 | 0          | .185854   | 34.2902    | 25.5513   | 28.9777    | 0          | 44.7861 | 31.2645        | 185.965      | .715069     | 10.22   | 0 | 0 | 0 | 0 | ı |
| 919217            | 136          | 64      | 0          | .56       | 93         | 51        | 93         | 0          | 80      | 38             | 359          | 8.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 20      | 25             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 | l |
| Daily             | 45.1588      | 20.8813 | 0          | .259343   | 33.7944    | 31,6843   | 46.7627    | 0          | 40.4385 | 31.2584        | 208.207      | .962076     | 10.2947 | 0 | 0 | 0 | 0 | ı |
| Wed, May 15,      | 136          | 64      | 0          | .56       | 92         | 51        | 84         | 0          | 56      | 38             | 359          | 8.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
| , ,               | 2            | 1       | 0          | .06       | 2          | 1         | 12         | 0          | 20      | 28             | 16           | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 45.1588      | 20.8813 | 0          | .259343   | 33.7944    | 31.6843   | 46.7627    | 0          | 40.4385 | 31.2584        | 208.207      | .962076     | 10.2947 | 0 | 0 | 0 | 0 | Ī |
| 15-05-2024 11:59  | 136          | 64      | 0          | .56       | 92         | 51        | 84         | 0          | 56      | 38             | 359          | 8.6         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | .06       | 2          | 1         | 12         | 0          | 20      | 28             | 16           | 0           | 9.9     | 0 | 0 | 0 | 0 | ı |
| Daily             | 16.1043      | 6.14979 | 0          | .150020   | 34.5320    | 22.5609   | 20.3057    | 0          | 46.9059 | 31.2675        | 175.119      | .594628     | 10.1835 | 0 | 0 | 0 | 0 | Ī |
| Thu, May 16, 2024 | 71           | 47      | 0          | .38       | 93         | 49        | 93         | 0          | 80      | 38             | 345          | 5.8         | 10.3    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 22      | 25             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 16.1043      | 6.14979 | 0          | .150020   | 34.5320    | 22.5609   | 20.3057    | 0          | 46.9059 | 31.2675        | 175.119      | .594628     | 10.1835 | 0 | 0 | 0 | 0 | ĺ |
| 16-05-2024 04:07  | 71           | 47      | 0          | .38       | 93         | 49        | 93         | 0          | 80      | 38             | 345          | 5.8         | 10.3    | 0 | 0 | 0 | 0 | I |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 22      | 25             | 0            | 0           | 9.7     | 0 | 0 | 0 | 0 | I |

Report Main Preferences Header Data



Record Cnt 1440

06-06-2024

**Start Date** 3:20:00 PM

End Date 07-06-2024

|                  | 3:19:        | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                  | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave              | 55.6958      | 7.27430 | 0          | .105395   | 87.8868    | 36.3854   | 6.84027    | .040833    | 96.0180 | 19.8437        | 153.784      | .14625      | 10.2432 | 0 | 0 | 0 | 0 |   |
| Max              | 3152         | 97      | 0          | .34       | 357        | 136       | 91         | .76        | 100     | 26             | 344          | 3.9         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min              | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 60      | 4              | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 |   |
| EPAS             | 55,6958      | 7.27430 | 0          | .105395   | 87.8868    | 36.3854   | 6.84027    | .040833    | 96.0180 | 19.8437        | 153.784      | .14625      | 10.2432 | 0 | 0 | 0 | 0 | 1 |
| 919217           | 3152         | 97      | 0          | .34       | 357        | 136       | 91         | .76        | 100     | 26             | 344          | 3.9         | 10.5    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 60      | 4              | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | I |
| Daily            | 116.419      | 7.625   | 0          | .122134   | 106,413    | 40.025    | 9.37307    | .091192    | 100     | 23.9769        | 104.907      | .01         | 10.2944 | 0 | 0 | 0 | 0 | 1 |
| Thu, Jun 6, 2024 | 3152         | 74      | 0          | .34       | 351        | 136       | 91         | .76        | 100     | 26             | 306          | .5          | 10.5    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1       | 0          | .04       | 34         | 20        | 0          | 0          | 100     | 23             | 48           | 0           | 9.9     | 0 | 0 | 0 | 0 | 4 |
| Ave Period 24    | 116.419      | 7.625   | 0          | .122134   | 106.413    | 40.025    | 9.37307    | .091192    | 100     | 23.9769        | 104.907      | .01         | 10.2944 | 0 | 0 | 0 | 0 | Ī |
| 06-06-2024 11:59 | 3152         | 74      | 0          | .34       | 351        | 136       | 91         | .76        | 100     | 26             | 306          | .5          | 10.5    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1       | 0          | .04       | 34         | 20        | 0          | 0          | 100     | 23             | 48           | 0           | 9.9     | 0 | 0 | 0 | 0 | 1 |
| Daily            | 21.3739      | 7.07608 | 0          | .095934   | 77.4152    | 34.3282   | 5.40869    | .012369    | 93.7673 | 17.5076        | 181.409      | .223260     | 10.2143 | 0 | 0 | 0 | 0 | Ī |
| Fri, Jun 7, 2024 | 1379         | 97      | 0          | .33       | 357        | 129       | 54         | .56        | 100     | 25             | 344          | 3.9         | 10.3    | 0 | 0 | 0 | 0 | 4 |
|                  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 60      | 4              | 1            | 0           | 9.7     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24    | 21.3739      | 7.07608 | 0          | .095934   | 77.4152    | 34.3282   | 5.40869    | .012369    | 93.7673 | 17.5076        | 181.409      | .223260     | 10.2143 | 0 | 0 | 0 | 0 | 1 |
| 07-06-2024 03:19 | 1379         | 97      | 0          | .33       | 357        | 129       | 54         | .56        | 100     | 25             | 344          | 3.9         | 10.3    | 0 | 0 | 0 | 0 |   |
|                  | 2            | 4       | 0          | ^         | 2          | 4         | 0          | ^          | 60      | 4              | 1            | ^           | 0.7     | 0 | 0 | 0 | 0 |   |



Record Cnt 1440

22-07-2024

Start Date 2:06:00 PM

End Date 23-07-2024

| End Dai           |              | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 8.17361      | 3.52152 | 30.4138    | .075291   | 19.9229    | 12.3701   | 1.14861    | .001041    | 89.4854 | 25.2861        | 200.05       | .142291     | 10.1427 | 0 | 0 | 0 | 0 |   |
| Max               | 81           | 50      | 93         | .52       | 65         | 35        | 30         | .14        | 100     | 31             | 359          | 3.7         | 10.5    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 55      | 23             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0 |   |
| EPAS              | 8.17361      | 3,52152 | 30.4138    | .075291   | 19.9229    | 12.3701   | 1.14861    | .001041    | 89.4854 | 25.2861        | 200.05       | .142291     | 10.1427 | 0 | 0 | 0 | 0 | 1 |
| 919217            | 81           | 50      | 93         | .52       | 65         | 35        | 30         | .14        | 100     | 31             | 359          | 3.7         | 10.5    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 55      | 23             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0 | ı |
| Daily             | 12,9191      | 6.73063 | 20.1498    | .081666   | 29.9747    | 17.4983   | 2.66161    | .002525    | 92.7676 | 24.9730        | 200.491      | .077609     | 10.3055 | 0 | 0 | 0 | 0 | ı |
| Mon, Jul 22, 2024 | 81           | 50      | 73         | .52       | 65         | 35        | 30         | .14        | 100     | 29             | 355          | 2,4         | 10.5055 | 0 | 0 | 0 | 0 | 1 |
| WOT, 64 22, 2024  | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 63      | 23             | 0            | 0           | 9.6     | 0 | 0 | 0 | 0 | 1 |
| Ave Period 24     | 12,9191      | 6.73063 | 20.1498    | .081666   | 29.9747    | 17,4983   | 2,66161    | .002525    | 92,7676 | 24,9730        | 200.491      | .077609     | 10,3055 | 0 | 0 | 0 | 0 | i |
| 22-07-2024 11:59  | 81           | 50      | 73         | .52       | 65         | 35        | 30         | .14        | 100     | 29             | 355          | 2.4         | 10.5    | 0 | 0 | 0 | 0 | ı |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 63      | 23             | 0            | 0           | 9.6     | 0 | 0 | 0 | 0 | ı |
| Daily             | 4.84160      | 1.26832 | 37.6205    | .070815   | 12.8652    | 8.76950   | .086288    | 0          | 87.1808 | 25.5059        | 199.739      | .187706     | 10.0283 | 0 | 0 | 0 | 0 | i |
| Tue, Jul 23, 2024 | 18           | 7       | 93         | .34       | 41         | 23        | 7          | 0          | 100     | 31             | 359          | 3.7         | 10.3    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 55      | 23             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0 | ı |
| Ave Period 24     | 4.84160      | 1.26832 | 37.6205    | .070815   | 12.8652    | 8.76950   | .086288    | 0          | 87.1808 | 25.5059        | 199.739      | .187706     | 10.0283 | 0 | 0 | 0 | 0 | Ī |
| 23-07-2024 02:05  | 18           | 7       | 93         | .34       | 41         | 23        | 7          | 0          | 100     | 31             | 359          | 3.7         | 10.3    | 0 | 0 | 0 | 0 | 1 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 55      | 23             | 0            | 0           | 9.1     | 0 | 0 | 0 | 0 | I |
|                   |              |         |            |           |            | -         |            |            | -       |                |              | -           |         |   |   |   |   |   |

Report Main Preferences Header Data



Record Cnt 1440

16-08-2024 Start Date 1:35:00 PM

# **Environmental Report**

End Date 17-08-2024

1:34:00 PM

| Ave<br><mark>Max</mark><br>Min    | PMA<br>ug/m3<br>11.4361<br>70<br>2 | <b>5.97777</b> 61 1 | CO2<br>ppm<br>0<br>0      | CO<br>ppm<br>.057493<br>1.06 | NO2<br>ppb<br><b>34.7201</b><br>375<br>2 | O3<br>ppb<br><b>17.8590</b><br>136<br>1 | SO2<br>ppb<br><b>2.0875</b><br>68<br>0 | PrpM<br>mm<br>.004569<br>.63 | RH % 91.7083 100 58   | TmpC<br>Deg. C<br>25.0298<br>30<br>23 | WDir<br>Deg.<br><b>214.579</b><br>358<br>14 | WSpd<br>mph<br>.16375<br>4.2 | Pwr V<br>10.2438<br>10.5<br>9.7 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        |
|-----------------------------------|------------------------------------|---------------------|---------------------------|------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------|-----------------------|---------------------------------------|---------------------------------------------|------------------------------|---------------------------------|--------------------|---------------------------|---------------------------|---------------------------|
| EPAS<br>919217                    | 11.4361<br>70<br>2                 | <b>5.97777 61</b> 1 | <b>0</b><br><b>0</b><br>0 | .057493<br>1.06<br>0         | <b>34.7201</b> 375 2                     | <b>17.8590</b> 136 1                    | 2.0875<br>68<br>0                      | .004569<br>.63<br>0          | 91.7083<br>100<br>58  | 25.0298<br>30<br>23                   | 214.579<br>358<br>14                        | .16375<br>4.2<br>0           | 10.2438<br>10.5<br>9.7          | 0<br>0<br>0        | 0<br>0<br>0               | <b>0</b><br>0<br>0        | 0<br>0<br>0               |
| Daily<br>Fri, Aug 16, 2024        | 14.8176<br>66<br>2                 | 8.6672<br>61<br>1   | <b>0</b><br><b>0</b><br>0 | .067392<br>.29<br>0          | <b>50.336</b><br>375<br>2                | 23.9088<br>136<br>1                     | <b>4.72</b> 68 0                       | .010128<br>.63<br>0          | 91.2128<br>100<br>61  | 25.2208<br>30<br>23                   | 196.212<br>358<br>14                        | .21536<br>4.2<br>0           | 10.3352<br>10.5<br>9.9          | 0<br>0<br>0        | 0<br>0<br>0               | <b>0</b><br>0<br>0        | 0<br>0<br>0               |
| Ave Period 24<br>16-08-2024 11:59 | 14.8176<br>66<br>2                 | 8.6672<br>61<br>1   | <b>0</b><br>0<br>0        | . <b>067392</b><br>.29<br>0  | <b>50.336</b> 375 2                      | <b>23.9088</b> 136 1                    | <b>4.72</b> 68 0                       | .010128<br>.63<br>0          | 91.2128<br>100<br>61  | 25.2208<br>30<br>23                   | 196.212<br>358<br>14                        | .21536<br>4.2<br>0           | 10.3352<br>10.5<br>9.9          | <b>0</b><br>0<br>0 | <b>0</b><br><b>0</b><br>0 | 0<br>0<br>0               | <b>0</b><br><b>0</b><br>0 |
| Daily<br>Sat, Aug 17, 2024        | 8.84294<br>70<br>2                 | 3.91533<br>51<br>1  | <b>0</b><br>0<br>0        | .049901<br>1.06<br>0         | <b>22.7447</b> 51 2                      | <b>13.2196</b> 28 1                     | .068711<br>8<br>0                      | .000306<br>.13<br>0          | <b>92.0883</b> 100 58 | 24.8834<br>30<br>23                   | <b>228.665</b><br>354<br>30                 | .124171<br>4<br>0            | 10.1737<br>10.3<br>9.7          | 0<br>0<br>0        | 0<br>0<br>0               | <b>0</b><br>0<br>0        | 0<br>0<br>0               |
| Ave Period 24<br>17-08-2024 01:34 | <b>8.84294</b> 70 2                | 3.91533<br>51<br>1  | <b>0</b><br>0<br>0        | .049901<br>1.06<br>0         | <b>22.7447</b> 51 2                      | <b>13.2196</b> 28 1                     | .068711<br>8<br>0                      | .000306<br>.13<br>0          | <b>92.0883</b> 100 58 | <b>24.8834</b><br>30<br>23            | <b>228.665</b><br>354<br>30                 | .124171<br>4<br>0            | 10.1737<br>10.3<br>9.7          | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br><b>0</b><br>0 | 0<br>0<br>0               |



Record Cnt 1440

19-09-2024

Start Date 3:12:00 PM

|                                   | 3. IZ.(                             | UU PIVI            |                      |                             |                                   |                                        |                                         |                              |                              |                                       |                                            |                                    |                                 |                    |                    |                           |                           |   |
|-----------------------------------|-------------------------------------|--------------------|----------------------|-----------------------------|-----------------------------------|----------------------------------------|-----------------------------------------|------------------------------|------------------------------|---------------------------------------|--------------------------------------------|------------------------------------|---------------------------------|--------------------|--------------------|---------------------------|---------------------------|---|
| End Dat                           | C                                   | 9-2024<br>00 PM    |                      |                             |                                   |                                        |                                         |                              |                              |                                       |                                            |                                    |                                 |                    |                    |                           |                           |   |
| Ave<br>Max<br>Min                 | PMA<br>ug/m3<br>18.4451<br>108<br>2 | 9.93472<br>68<br>1 | CO2<br>ppm<br>0<br>0 | CO<br>ppm<br>.072451<br>.5  | NO2<br>ppb<br>38.0930<br>246<br>2 | O3<br>ppb<br><b>20.7465</b><br>95<br>1 | SO2<br>ppb<br><b>5.02152</b><br>83<br>0 | PrpM<br>mm<br>.005097<br>.65 | RH %<br>89.3520<br>100<br>56 | TmpC<br>Deg. C<br>26.1270<br>32<br>22 | WDir<br>Deg.<br><b>253.053</b><br>359<br>0 | WSpd<br>mph<br>.255763<br>4.6<br>0 | Pwr V<br>10.3373<br>10.6<br>9.9 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        |   |
| EPAS<br>919217                    | 18.4451<br>108<br>2                 | 9.93472<br>68<br>1 | <b>0</b><br>0<br>0   | .072451<br>.5<br>0          | 38.0930<br>246<br>2               | <b>20.7465</b> 95 1                    | <b>5.02152</b> 83 0                     | .005097<br>.65               | <b>89.3520</b> 100 56        | 26.1270<br>32<br>22                   | 253.053<br>359<br>0                        | .255763<br>4.6<br>0                | 10.3373<br>10.6<br>9.9          | 0<br>0<br>0        | 0<br>0<br>0        | <b>0</b><br>0<br>0        | 0<br>0<br>0               |   |
| Daily<br>Thu, Sep 19, 2024        | <b>24.9696</b><br>104<br>2          | 11.6041<br>56<br>1 | <b>0</b><br>0<br>0   | .092443<br>.18<br>0         | 34.7935<br>71<br>2                | <b>22.0776</b> 37 1                    | <b>7.26704</b> 36 0                     | <b>0</b><br>0<br>0           | <b>94.1893</b> 100 69        | 25.6363<br>30<br>24                   | 282.924<br>358<br>4                        | .232765<br>3.7<br>0                | <b>10.4821</b><br>10.6<br>10    | 0<br>0<br>0        | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        | I |
| Ave Period 24<br>19-09-2024 11:59 | <b>24.9696</b><br>104<br>2          | 11.6041<br>56<br>1 | <b>0</b><br>0<br>0   | . <b>092443</b><br>.18<br>0 | <b>34.7935</b> 71 2               | <b>22.0776</b> 37 1                    | <b>7.26704</b> 36 0                     | <b>0</b><br>0<br>0           | <b>94.1893</b><br>100<br>69  | <b>25.6363</b> 30 24                  | 282.924<br>358<br>4                        | .232765<br>3.7<br>0                | <b>10.4821</b><br>10.6<br>10    | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        | Ī |
| Daily<br>Fri, Sep 20, 2024        | 14.6677<br>108<br>2                 | 8.96820<br>68<br>1 | <b>0</b><br>0<br>0   | .060877<br>.5<br>0          | <b>40.0032</b> 246 2              | <b>19.9758</b><br>95<br>1              | <b>3.72149</b> 83 0                     | .008048<br>.65               | <b>86.5515</b> 100 56        | <b>26.4111</b> 32 22                  | <b>235.759</b><br>359<br>0                 | .269078<br>4.6<br>0                | 10.2535<br>10.5<br>9.9          | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0        | <b>0</b><br>0<br>0        |   |
| Ave Period 24<br>20-09-2024 03:11 | 14.6677<br>108<br>2                 | 8.96820<br>68<br>1 | <b>0</b><br>0<br>0   | .060877<br>.5<br>0          | <b>40.0032</b> 246 2              | <b>19.9758</b><br>95<br>1              | <b>3.72149</b> 83 0                     | .008048<br>.65<br>0          | <b>86.5515</b> 100 56        | <b>26.4111</b> 32 22                  | <b>235.759</b><br>359<br>0                 | <b>.269078</b> 4.6 0               | <b>10.2535</b><br>10.5<br>9.9   | <b>0</b><br>0<br>0 | <b>0</b><br>0<br>0 | <b>0</b><br><b>0</b><br>0 | <b>0</b><br><b>0</b><br>0 |   |

Report Main Preferences Header Data



Record Cnt 1440

23-10-2024

Start Date 3:47:00 PM

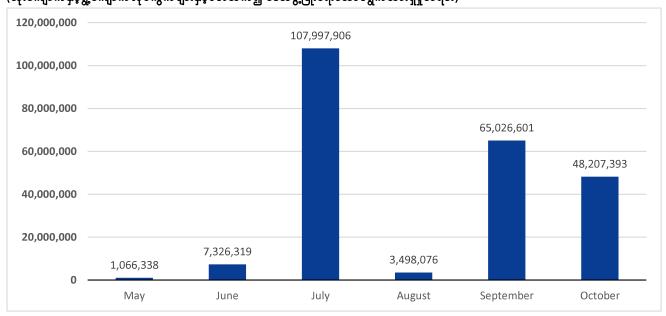
End Date 24-10-2024

|                   | 3:46:        | 00 PM   |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |
|-------------------|--------------|---------|------------|-----------|------------|-----------|------------|------------|---------|----------------|--------------|-------------|---------|---|---|---|---|---|
|                   | PMA<br>ug/m3 |         | CO2<br>ppm | CO<br>ppm | NO2<br>ppb | O3<br>ppb | SO2<br>ppb | PrpM<br>mm | RH %    | TmpC<br>Deg. C | WDir<br>Deg. | WSpd<br>mph | Pwr V   |   |   |   |   |   |
| Ave               | 12.6361      | 4.80416 | .000694    | .074243   | 22.2333    | 14.4375   | 1.90625    | 0          | 88.4180 | 24.9652        | 169.236      | .179513     | 9.93527 | 0 | 0 | 0 | 0 |   |
| Max               | 89           | 56      | 1          | .71       | 59         | 34        | 23         | 0          | 100     | 31             | 358          | 5.2         | 10.2    | 0 | 0 | 0 | 0 |   |
| Min               | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.3     | 0 | 0 | 0 | 0 |   |
| EPAS              | 12,6361      | 4.80416 | .000694    | .074243   | 22.2333    | 14.4375   | 1.90625    | 0          | 88.4180 | 24.9652        | 169.236      | .179513     | 9.93527 | 0 | 0 | 0 | 0 | 1 |
| 919217            | 89           | 56      | 1          | .71       | 59         | 34        | 23         | 0          | 100     | 31             | 358          | 5.2         | 10.2    | 0 | 0 | 0 | 0 | 4 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.3     | 0 | 0 | 0 | 0 | I |
| Daily             | 19.8620      | 7.35091 | .002028    | .091805   | 34.2068    | 21.6572   | 2.33874    | 0          | 97.7991 | 24.1277        | 143.931      | .078701     | 10.0137 | 0 | 0 | 0 | 0 | ı |
| Wed, Oct 23, 2024 | 58           | 41      | 1          | .34       | 59         | 34        | 15         | 0          | 100     | 27             | 188          | 3.6         | 10.2    | 0 | 0 | 0 | 0 | 4 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 78      | 23             | 14           | 0           | 9.6     | 0 | 0 | 0 | 0 | 4 |
| Ave Period 24     | 19.8620      | 7.35091 | .002028    | .091805   | 34.2068    | 21.6572   | 2.33874    | 0          | 97.7991 | 24.1277        | 143.931      | .078701     | 10.0137 | 0 | 0 | 0 | 0 | Ī |
| 23-10-2024 11:59  | 58           | 41      | 1          | .34       | 59         | 34        | 15         | 0          | 100     | 27             | 188          | 3.6         | 10.2    | 0 | 0 | 0 | 0 |   |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 78      | 23             | 14           | 0           | 9.6     | 0 | 0 | 0 | 0 | ı |
| Daily             | 8.87434      | 3.47835 | 0          | .065100   | 16         | 10.6789   | 1.68109    | 0          | 83.5343 | 25.4012        | 182.410      | .231995     | 9.89440 | 0 | 0 | 0 | 0 | Ī |
| Thu, Oct 24, 2024 | 89           | 56      | 0          | .71       | 48         | 27        | 23         | 0          | 100     | 31             | 358          | 5.2         | 10      | 0 | 0 | 0 | 0 | 4 |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.3     | 0 | 0 | 0 | 0 | 4 |
| Ave Period 24     | 8.87434      | 3.47835 | 0          | .065100   | 16         | 10.6789   | 1.68109    | 0          | 83.5343 | 25.4012        | 182.410      | .231995     | 9.89440 | 0 | 0 | 0 | 0 | Ī |
| 24-10-2024 03:46  | 89           | 56      | 0          | .71       | 48         | 27        | 23         | 0          | 100     | 31             | 358          | 5.2         | 10      | 0 | 0 | 0 | 0 |   |
|                   | 2            | 1       | 0          | 0         | 2          | 1         | 0          | 0          | 56      | 22             | 0            | 0           | 9.3     | 0 | 0 | 0 | 0 | 1 |
|                   |              |         |            |           |            |           |            |            |         |                |              |             |         |   |   |   |   |   |



### SHWE TAUNG MINING COMPANY LIMITED




**Bi-Annual Environmental Monitoring Report** 

# APPENDIX-D Corporate Social Responsibility

### ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ၊ ရွှေတောင်သတ္ထုတူးဖော်ထုတ်လုပ်ရေးကုမ္ပဏီလီမိတက် (ထုံးကျောက်နှင့်ရွံ့ကျောက်လုပ်ကွက်များနှင့်ပတ်သက်၍ ဒေသဖွံ့ဖြိုးရေးဆောင်ရွက်ထားရှိမှုစာရင်း)

| စဥ် | အကြောင်းအရာ                                                                   | May -<br>2024 | Jun -<br>2024 | Jul - 2024  | Aug -<br>2024 | Sep -<br>2024 | Oct -<br>2024 | Total<br>(kyats) |  |
|-----|-------------------------------------------------------------------------------|---------------|---------------|-------------|---------------|---------------|---------------|------------------|--|
| ၁   | လမ်းပန်းဆက်သွယ်ရေး<br>တိုးတက်ကောင်းမွန်အောင်<br>ဆောင်ရွက်ပေးနိုင်မှု          |               |               | 104,983,900 | 438,180       | 1,217,500     |               | 106,639,580      |  |
| J   | ပြည်သူများ ရေရရှိမှု အထောက်အကူပြု<br>ဆောင်ရွက်ပေးနိုင်မှု                     |               |               |             |               |               | 882,000       | 882,000          |  |
| 9   | လျှပ်စစ်မီးရရှိရေး အထောက်အကူပြု<br>ဆောင်ရွက်ပေးနိုင်မှု                       |               |               |             |               |               |               | 0                |  |
| 9   | ပညာရေး ဖွံ့ဖြိုးတိုးတက်စေရန်<br>အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု             | 350,000       | 1,003,000     | 2,394,940   | 1,267,800     | 1,720,000     | 2,206,730     | 8,942,470        |  |
| 9   | ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်စေရန်<br>အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု         | 295,078       | 267,609       | 162,146     | 426,336       | 277,851       | 383,663       | 1,812,683        |  |
| G   | လူမှုရေးနှင့် ကယ်ဆယ်ရေး<br>အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု                  | 421,260       | 6,055,710     | 34,000      | 1,365,760     | 718,750       | 325,000       | 8,920,480        |  |
| 9   | ဘာသာသာသနာရေး<br>အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု                             |               |               | 422,920     |               |               | 3,500,000     | 3,922,920        |  |
| စ   | သဘာဝဘေးအန္တရာယ်ကျရောက်<br>ပျက်စီးမှုများ အထောက်အကူပြု<br>ဆောင်ရွက်ပေးနိုင်မှု |               |               |             |               | 61,092,500    | 40,910,000    | 102,002,500      |  |
|     | စုစုပေါင်း                                                                    | 1,066,338     | 7,326,319     | 107,997,906 | 3,498,076     | 65,026,601    | 48,207,393    | 233,122,633      |  |

### ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ၊ ရွှေတောင်သတ္ထုတူးဖော်ထုတ်လုပ်ရေးကုမ္ပဏီလီမိတက် (ထုံးကျောက်နှင့်ရွံ့ကျောက်လုပ်ကွက်များနှင့်ပတ်သက်၍ ဒေသဖွံ့ဖြိုးရေးဆောင်ရွက်ထားရှိမှုစာရင်း)



# လမ်းပန်းဆက်သွယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း



ပုံ -၂၀၂၄ခုနှစ်၊ ဇူလိုင်လအတွင်း ကူပြင်ကျေးရွာသို့ သွားသည့် လမ်းအရှည် (၁.၂၆) မိုင် ကျေးလက်လမ်းအား လိုအပ်သည့်မြေနှင့် ကျောက်များ ဖြည့်၍ လမ်းမြေညှိပေးခြင်း။



ပုံ - ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း ပြည်ညောင်ကျေးရွာအတွင်းရှိ အမှတ်(၂)ရပ်ကွက် လမ်းအား ကွန်ကရစ်လမ်းခင်းနေစဉ်။

## ပညာရေးဖွံ့ဖြိုးတိုးတက်စေရန် အထောက်အကူပြုပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း



ပုံ – ၂၀၂၄ခုနှစ်၊ စွန်လမှ အောက်တိုဘာလအထိ ပြည်ညောင်ကျေးရွာ အခြေခံပညာအထက်ကျောင်းမှ ဆရာမအား လစာငွေ ပေးအပ်နေစဉ်။



ပုံ-၂၀၂၄ခုနှစ်၊ ဇွန်လမှ အောက်တိုဘာလအထိ ပြည်ညောင် ကျေးရွာ အခြေခံပညာ အထက်တန်းကျောင်းမှ ကျောင်းသား၊ ကျောင်းသူ(၇)ဦးအား ပညာသင် ထောက်ပံ့ကြေး ပေးအပ်နေစဉ်။



ပုံ- ၂၀၂၄ခုနှစ်၊ ဇူလိုင်လအတွင်း ကူပြင်ကျေးရွာစာသင် ကျောင်းတွင် "ဒို့ရွာရေကန်" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပ နေစဉ်။



ပုံ-၂၀၂၄ခုနှစ်၊ ဇွန်လအတွင်း ပြည်ညောင်ကျေးရွာ စာကြည့်တိုက်တွင် "ဒို့ရွာရေကန်" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပနေစဉ်။

ကားဖြင့်အကြိုအပို့ ပြုလုပ် ပေးခြင်း။



ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလ ကျင်းပပြုလုပ်သော သာစည်မြို့နယ်အဆင့် ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကူပြင် ကျေးရွာ အခြေခံပညာ အင်္ဂလိပ်စာနှင့် သင်္ချာစွမ်းရည်ပြိုင်ပွဲအား ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာ အထက် အလယ်တန်းကျောင်းတွင် ပျက်စီးနေသော မျက်နှာကြက်များအား ပြုပြင်ပေးခြင်း။ တန်းကျောင်းရှိ ကျောင်းသား၊ ကျောင်းသူများမှ သွားရောက်ယှဥ်ပြိုင်ဖြေဆိုရန် အတွက်



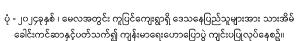




ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းတွင် သောက်ရေသန့်စက်အတွက် ရေသိုလှောင်ကန်အသစ် တည်ဆောက်ခြင်းအတွက် ရန်ပုံငွေထည့်ဝင်ကူညီပံ့ပိုးပေးခြင်း။






ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီဓိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာ အခြေခံပညာကျောင်းများမှ ကျောင်းသား/ကျောင်းသူ ပညာသင်ထောက်ပံ့ကြေးပေးအပ်ခြင်း

# ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း









ပုံ–၂၀၂၄ခုနှစ် ၊ ဩဂုတ်လအတွင်း ပြည်ညောင်ကျေးရွာ အုပ်စုအတွင်းရှိ ပြည်ညောင် ကျေးလက်ဆေးပေးခန်းတွင် ဆေးအငွေ့ ရှူ(ချွဲပျော်စက်)အား လှူဒါန်းနေစ၌။

## လူမှုရေးနှင့်ကယ်ဆယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း



ပုံ -၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလမှ စတင်၍ ကူပြင်ကျေးရွာရှိ အသက်အရွယ် ကြီးရင့်သော အဖိုးအဖွားများအား ကူညီထောက်ပံ့ ပေးခြင်း။



ပုံ – ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာရှိ စာကြည့်တိုက်တွင် ဒေသနေ ကလေးငယ်များ ကာယဉာဏ ဖွံ့ဖြိုးစေရန် လေ့ကျင့် ကစားစရာများနှင့် သင်ထောက်ကူပစ္စည်းများထောက်ပံ့ ပေးထားခြင်း။



ပုံ - ပြည်ညောင်နှင့် ကူပြင်ကျေးရွာရှိ ထာဝရအလင်းတန်း စာကြည့်တိုက်တွင် ဒေသနေပြည်သူများ စာပေဗဟုသုတ၊ ပြင်ပအထွေထွေဗဟုသုတ၊ သတင်းအချက်အလက်နှင့် နည်းပညာများ လေ့လာနိုင်စေရန်အတွက် လစဥ် စာအုပ်အသစ်များထားရှိပေးခြင်းနှင့် Internet Wi-Fi အခမဲ့ တပ်ဆင်ပေးထားခြင်း။

### ဘာသာသာသနာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း





ငုံ - ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကူပြင်ကျေးရွာ၊ စုပေါင်းမဟာဘုံ ကထိန်ပွဲအတွက် အလှူငွေထည့်ဝင်လှူဒါန်းခြင်း။

ပုံ-၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ပြည်ညောင်ကျေးရွာ၊ စုပေါင်းမဟာဘုံကထိန်ပွဲ အတွက် အလှူငွေထည့်ဝင်လှူဒါန်း ခြင်း။

# သဘာဝဘေးအန္တရာယ်ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလ နှင့် အောက်တိုဘာလတွင် စက်ရုံးအနီးနားရှိကျေးရွာများနှင့် အခြားဒေသများတွင် ယာဂီမုန်တိုင်းကြောင့် ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။



ပုံ-၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း ပြည်ညောင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။

ပုံ- ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း အုတ်ကျင်းကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။



ပုံ-၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း တောင်ပြည်ညောင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။



ပုံ– ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း – ကူပြင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။



ပုံ- ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း မုံပင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။



ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကလောမြို့ရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။