

Bi-Annual Environmental Monitoring Report

SHWE TAUNG CEMENT COMPANY LIMITED

Biannual Environmental Monitoring Report (May 2024 to October 2024)

This page is a record of all revisions of this document. All previous issues are hereby superseded and are to be destroyed.

0	November 2024	Bi-annual reporting to	and		B
	2024	ECD	Hein Latt Environmental Manager	- Head of HSE	Kyaw Naing Soe Deputy Managing Director
Rev	Date	Description	Prepared by	Checked by	Approved by

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

Table of Contents

1.	Introduction	on	4
	1.1 Execu	itive Summary	4
	1.2 Purpo	se of Environmental Monitoring	4
	1.3 Health	n, Social and Environmental Department	5
	1.4 Enviro	onmental Performance Indicators and Monitoring Schedule	5
2.	Project In	formation	6
	2.1 Project	et Location	6
	2.2 Projec	ct Description	8
3.	Environm	ental Monitoring Program	9
	3.1 Air Qu	uality Monitoring	9
	3.1.1	Monitoring Location	9
	3.1.2	Monitoring Method	10
	3.1.3	Monitoring Result for Kiln Stack Emission	11
	3.1.4	Monitoring Result for Ambient Air Quality Monitoring	12
	3.1.5	Air Quality Index	13
	3.1.6	Monitoring Result for Dust Deposition	15
	3.1.7	Air Quality Mitigation Measures	17
	3.1.8	Evaluation	19
	3.2 Water	Quality Monitoring	21
	3.2.1	Monitoring Location	21
	3.2.2	Monitoring Result for Water Quality	22
	3.2.3	Water Quality Mitigation Measures	24
	3.2.4	Evaluation	27
	3.3 Noise	Monitoring	28
	3.3.1	Location Map of Noise Quality Monitoring Points	28
	3.3.2	Evaluation	28
	3.4 Soil Q	uality Monitoring	29
	3.4.1	Location Map of Soil Quality Monitoring Points	29
	3.4.2	Evaluation	29
		e Management Monitoring	30
	3.5.1	Generation of Non-Hazardous Waste	30
	3.5.2	Generation of Hazardous Waste	32
	3.5.3	Waste Management Mitigation Measures	32
	3.5.4	Evaluation	34
4.	Biodiversi	ty Action Plan Implementation	35
5.	Corporate	e Social Responsibility	37
6.	Occupation	onal Health and Safety	37
	6.1 Fire S	afety Measures	37
	6.2 Occup	pational Hazard Prevention and First Aid Training	38
7.	Conclusio	n and Recommendation	40
8.	Appendix		41

Bi-Annual Environmental Monitoring Report

အကျဉ်းချုပ်အစီရင်ခံစာ

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (STC) သည် မြန်မာနိုင်ငံရှိ စီးပွားရေးကဏ္ဍအသီးသီးတွင် လုပ်ငန်းမျိုးစုံကို လုပ်ကိုင်ဆောင်ရွက်နေသော ရွှေတောင်ကုမ္ပဏီအုပ်စု၏ လုပ်ငန်းတစ်ခုဖြစ်ပြီး မန္တလေးတိုင်းဒေသကြီး သာစည်မြို့နယ်၊ ပြည်ညောင်ကျေးရွာရှိ ဘိလပ်မြေစက်ရုံ စီမံကိန်းသည် STC ၏ clinker ထုတ်လုပ်မှုစွမ်းရည်ကို တစ်ရက်လျှင် တန်ချိန် ၁,၅၀၀ မှ တန် ၅,၅၀၀ နှင့် ဘိလပ်မြေပမာဏ တစ်နေ့လျှင် ၂,၈၀၀ တန် မှ ၇,၂၀၀ တန် အထိ တိုးချဲ့ရန် ရည်ရွယ်ပါသည်။ စီမံကိန်း၏တည်နေရာကို ပုံ (၁) တွင် ဖော်ပြထားပါသည်။

STC သည် ဘိလပ်မြေစက်ရုံတိုးချဲ့စီမံကိန်းအတွက် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း (EIA) ကို ဆောင်ရွက်ရန် အတွက် Environmental Resources Management (ERM)-Hong Kong, Limited အား တာဝန်ပေးအပ်ခဲ့ပါသည်။

ဘိလပ်မြေစက်ရုံ ဧရိယာသည် ၂၀၁၆ ခုနှစ် မတ်လ ၃၁ ရက်နေ့တွင် သစ်တောဦးစီးဌာနမှ နှစ် ၅၀ သဘောတူညီချက်အရ ငှားရမ်းထားသော ဧက ၄၀၀ အတွင်း တည်ရှိပြီး ဘိလပ်မြေစက်ရုံ ပထမလိုင်းမှ အသုံးပြုသည့် ၄၅ ဧက အပါအဝင် ဒုတိယလိုင်းမှ ၁၅ ဧက၊ ရေအရင်းအမြစ် ဧက ၅၀၊ ဝန်ထမ်းအိမ်ရာနှင့် စားသောက်ဆောင်အတွက် (၈) ဧက ခွဲဝေပေးထားပြီး ကျန် ၂၈၂ ဧကကို လမ်းပန်းဆက်သွယ်ရေးနှင့် သစ်ပင်စိုက်ပျိုးခြင်းအတွက် အသုံးပြုပါသည်။ ၂၀၁၆ ခုနှစ် မတ်လ ၃၁ ရက်နေ့တွင် သစ်တောဦးစီးဌာနမှ နှစ် ၅၀ သဘောတူညီချက်အရ ငှားရမ်းထားသော ၅၅ ဧကကို ဝန်ထမ်းများ၏ မိသားစုအိမ်ယာနှင့် အပန်းဖြေနေရာများအတွက် ခွဲဝေပေးထားပါသည်။

မန္တလေးတိုင်းဒေသကြီး သာစည်မြို့နယ် ကူပြင်ကျေးရွာတွင် တည်ရှိသော ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီ လီမိတက်၏ ဘိလပ်မြေ ၂၈၀၀ တန်မှ ၇၂၀၀ တန်အထိ တိုးချဲ့ထုတ်လုပ်မည့် စီမံကိန်းအတွက် ပတ်ဝန်းကျင် ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာသည် ၂၀၁၉ ခုနှစ်၊ နိုဝင်ဘာလ၊ ၂၂ ရက်နေ့တွင် ပြည်ထောင်စုသမ္မတမြန်မာနိုင်ငံတော်၊ သယံဧာတနှင့်သဘာဝ ပတ်ဝန်းကျင်ထိန်းသိမ်းရေးဝန်ကြီးဌာန (MONREC) ၏ အတည်ပြုချက် ရရှိခဲ့ပြီး ၂၀၂၃ ခုနှစ်၊ သြဂုတ်လ၊ ၂၅ ရက်နေ့တွင် ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဆိုင်ရာ လိုက်နာဆောင်ရွက်မှု သက်သေခံလက်မှတ်ကိုလည်း ရရှိခဲ့ပြီးဖြစ်ပါသည်။ သို့ဖြစ်ပါ၍ STC သည် ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းအစီရင်ခံစာတွင် ဖော်ပြထားသော ပတ်ဝန်းကျင်စီမံခန့်ခွဲမှု အစီအစဉ် (EMP) နှင့်အညီ ပတ်ဝန်းကျင်နှင့်လူမှုရေးဆိုင်ရာ စောင့်ကြပ်ကြည့်ရှုစစ်ဆေးမှု ကိစ္စရပ်များ (Environmental & Social Monitoring Program) ကို လိုက်နာဆောင်ရွက်ခဲ့ပြီး ယခုအခါတွင် ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဥပဒေနှင့် နည်းဥပဒေများ၊ ပတ်ဝန်းကျင် ထိန်းသိမ်းရေးဦးစီးဌာနမှ ချမှတ်ထားသော လုပ်ထုံးလုပ်နည်းများ အတိုင်း ၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ် အောက်တိုဘာလအထိ ဆောင်ရွက်ခဲ့သော ပတ်ဝန်းကျင်စောင့်ကြပ်ကြည့်ရှု စစ်ဆေးခြင်းအစီရင်ခံစာကို တင်ပြခြင်းဖြစ်ပါသည်။

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

1. Introduction

1.1 Executive Summary

Shwe Taung Cement Company Ltd. (STC), part of the Shwe Taung Group (STG) which owns and operates a variety of businesses across various sectors in Myanmar, is planning a brownfield expansion of cement production at its existing cement plant in Pyi Nyaung Village, Thazi Township in the Mandalay region of Myanmar. The Project aims to expand STC's clinker production capacity from 1,500 tonnes per day (tpd) to 5,500 tpd and cement capacity from 2,800 tpd to 7,200 tpd. The location of the Project is shown in Figure-1.

STC commissioned Environmental Resources Management (ERM)-Hong Kong, Limited to undertake the Environmental Impact Assessment (EIA) for the cement plant expansion Project.

The cement plant area covers 400 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 (following three lease agreements renewed annually) including 45 acres used by the cement plant first line, 15 acres to be used by the second line (the Project) and 50 acres of dedicated water resources. Eight (8) acres are allocated for employee housing and catering services and the remaining 282 acres are planted or used for access roads. An adjacent area of 55 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 is allocated to employees' family housing and recreation activities.

Shwe Taung Cement Co., Ltd (STC) received the approval from Ministry of Natural Resources and Environmental Conservation (MONREC) for the project of cement production and expansion of cement capacity from 2800 tpd to 7200 tpd per day in Ku Pyin Village Tract, Thazi Township, Mandalay Region on 22nd November 2019 and received Environmental Compliance Certificate on 25th August 2023. Therefore, STC conducted environmental monitoring program in line with Environmental Management Plan and comply Environmental Conservation Law and Rules, the Procedure of ECD and submit this biannual environmental monitoring report for May 2024 to October 2024.

1.2 Purpose of Environmental Monitoring

Monitoring is a means of verifying the effectiveness of the management and mitigation measures contained within the management plans listed in STC EIA for Cement Plant.

- 1) The Environmental Engineers from HSE department of Cement Plant shall do the following:
 - Monitor and implement the this ESMP at site;
 - · Conduct Environmental monthly inspection checklist audit;
 - Monitor laboratory personnel while conducting their water sampling and testing method;
 - Assist and monitor the implementation of Waste Management; and
 - Monitor and review the air emission test result for compliance recommendation.
- 2) All inspection checklist audit finding that needs rectification shall be recorded in Environmental and Social tracker and will be assigned by Environmental Manager to concerned department head for rectification.
- 3) All water, effluent and air emission test results will be compiled for review and analyses by Environmental Manager and approved by Head of HSE.
- 4) All generated waste according to their classification and final disposal will be entered to waste management matrix for monthly report.
- 5) The Environmental Executive will be implementing and monitoring within the project area, new infestation and according to BAP.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

1.3 Health, Social and Environment (HSE) Department

Shwe Taung Cement Co., Ltd. established HSE Department and responsibility of HSE Department are as follows.

- 1) Implementation of Environmental Management Plans of approved EIA report of STC Cement Plant, Comply Rules and Regulations of Environmental Conservation, report Environmental Monitoring
- 2) Supervise third party stakeholders, contractors and other organizations for environmental monitoring program
- 3) Monitoring environmental impact and report the relevant documents
- 4) Promote the ability of employees by conducting knowledge sharing training and awareness on environmental conservation.

1.4 Environmental Performance Indicators and Monitoring Schedule

Physical, biological and social environmental management components of particular significance have been identified as performance indicators. A comprehensive monitoring plan for each performance indicator has been prepared for all phases of the Project, presented in Table -1.

Table -1: Environmental Monitoring Program

Item	Project Stage	Potential	Parameters to be	Location	Measurement	Procedure	Frequency	Operation	Environment
No.	Component	Impact	monitored					Responsibility	Responsibility
1	Construction and Operation/ Cement Plant	Inspection of mitigation compliance	General compliance with mitigation measures presented in the ESMP	Project activity areas	Visual inspection of all active work areas and inspection of records	1.Daily & Weekly inspection Checklist 2. WMP Inspection Checklist	Weekly	STC Operation Team	Environmental Engineers
2	Operation/ Cement Plant	Stack emission from ki l n system.	NO _x , SO ₂ , PM _{2.5} , PM ₁₀ and O ₂	Discharge to kiln stack at new and existing plant	Real-time monitoring system	Data Result from real time monitoring	Continuous monitoring	Control room	Environmental Engineers
3	Operation/ Cement Plant	Stack emission from kiln system.	Check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime Manufacturing (for NO _x , SO ₂ , PM _{2.5} , PM ₁₀)	Stack emission from existing and new kilns	Standard analytical methods	Data result from ECD monitoring report	Monthly	STC Operation/ Control room	Environmental Engineers
4	Operation/ Cement Plant	Dust impact	Dust deposition	Cement Plant, Kubyin and Pyi Nyaung Village	Dust deposition gauge	Data result from STC Laboratory from different sampling points	Monthly	STC Laboratory	Environmental Engineers
5	Operation/ Cement Plant	Discharge of treated wastewater	Check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for site runoff and wastewater discharges (for BOD, COD, TSS, Oil and Grease, pH, total coliform bacteria, total nitrogen, total phosphorus)	Treated wastewater discharged points at: 1. Coal Storage Area and Materials Handling Yards 2. Fuel Storage Area 3. Treated sanitary wastewater treatment facility and 4, Reservoir	Standard analytical methods	Data result from sampling points (Private Laboratory)	Monthly	STC Laboratory	Environmental Engineers
6	Operation/ Cement Plant	Discharge of treated wastewater and runoff	Check compliance with Myanmar National Environmental Quality (Emission) Guidelines (2015) for Cement and Lime Manufacturing (for NO _x , SO ₂ , PM _{2.5} , PM ₁₀)	Treated industrial wastewater discharge point from cement manufacturing process	Standard analytical methods	Data result from sampling points (STC Laboratory compare to from ECD monitoring result)	Monthly	STC Laboratory	Environmental Engineers

Bi-Annual Environmental Monitoring Report

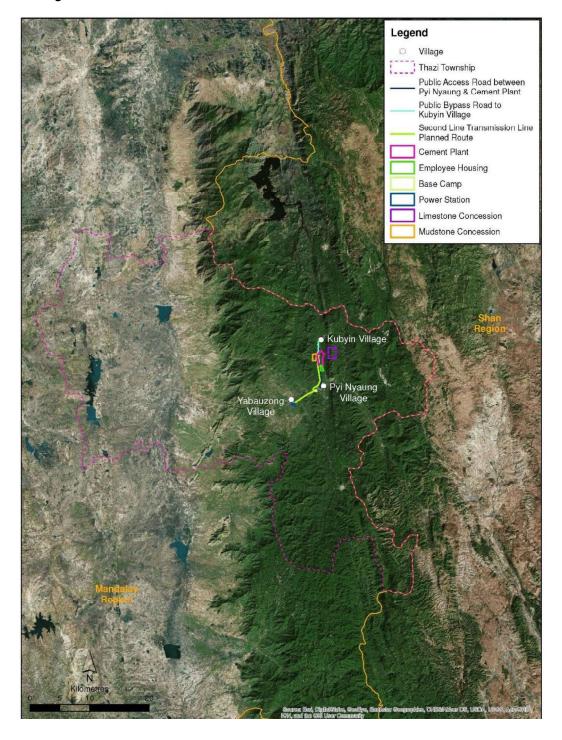
7	Biodiversity	Habitat	Monitoring of invasive species is to occur within the project area on an annual basis. New infestations identified are to be controlled	Project activity areas	Visual inspection of all active work areas and inspection of records	Visual inspection or as plan to install camera trap	Monthly	Security / Social community	Environmental Engineers
8	Air Quality	Cement Plant – Stack emission	An occupational exposure monitoring programme for workers will be put in place to monitor indoor air quality	Inside office area	Standard analytical methods	Data result from ambient air monitoring inside the offices (Private Laboratory)	Monthly	Private Laboratory	Environmental Engineers
9	Waste management	Waste manageme nt	Generated waste for operation and construction	All sites: 1.Plant Area including Accommodation	Accumulation s of generated waste	Consolidation of Waste management log sheet from all waste collection points	Monthly	Area in-charge of waste collection points	Environmental Engineers

This includes the parameters to be measured, methods to be utilized, sampling locations, frequency of measurements, detection limits and responsibilities for implementation and supervision.

Impact monitoring will be undertaken during the life of the Project to verify the predicted levels of residual impacts from the Project and the effectiveness of the various management plans and mitigation measures.

Shwe Taung Cement Co., Ltd. will prepare an environmental monitoring report and submit to the Ministry of Natural Resources and Environmental Conservation, MONREC in every six months as per the EIA Procedure requirements.

2. Project Information


2.1 Project Location

Shwe Taung Cement Co., Ltd. Located in Kupyin Village Tract, Tharzi Township, Meikhtila District, Mandalay Region. The cement plant area covers 400 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 (following three lease agreements renewed annually) including 45 acres used by the cement plant first line, 15 acres to be used by the second line (the Project) and 50 acres of dedicated water resources. Eight acres are allocated for employee housing and catering services and the remaining 282 acres are planted or used for access roads. An adjacent area of 55 acres leased under a 50-year agreement from the Forest Department on 31 March 2016 is allocated to employees' family housing and recreation activities. The cement plant is situated in a valley surrounded by a mudstone quarry to the west and a limestone quarry to the east, which falls within the Tha Pyae mountain range (*Figure -1*).

Figure-1: Location of STC Cement Plant

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

2.2 Project Description

STC manufactures cement with clinker, gypsum and limestone (additive). Clinker is produced from limestone, mudstone, laterite and other materials. The clinker production and cement grinding capacity of the existing plant are 1,500 tpd and 2,800 tpd, respectively. The Project involves expanding the clinker production capacity to 5,500 tpd and 7,200 tpd of cement through the construction of a new rotary kiln and associated facilities. A dry process is used for the cement production and the second line will adopt a similar dry process as the first line, with additional facilities installed to achieve the increased capacity. These additional facilities will be installed within the existing 455-acre site.

All land leased to date by the company is state-owned forest land. With the exception of a small amount of land to accommodate the new transmission line, no new land is required to accommodate the expanded facilities.

Project components of the existing and expanded cement plant are shown in Figure-2. These include raw materials crushing area, handling area, clinker production area, cement grinding area, cement packing and dispatch area, coal staging area and office building.

During the reporting period, cement plant is operating stage.

Figure – 2: Project Components of the Existing and Expanded STC Cement Plant

Index

<u>In</u>	<u>idex</u>		
	Existing Cement Line Facilities		Expansion Cement Line
1	- Raw Materials Crushing Area	1	- Raw Material Crushing Area
2	- Handling Area	2	- Handling Area
3	- Clinker Production Area	3	- Clinker Production Area
4	- Cement Grinding Area	4	- Cement Grinding Area
5	- Cement Packing and Dispatch Area	5	- Cement Packing and Dispatch Area
6	- Coal Staging Area		- Expansion Conveyor Line
7	- Office		- Boundary Line
		•	

Bi-Annual Environmental Monitoring Report

3. Environmental Monitoring Program

3.1 Air Quality Monitoring

Cement industry is a potential anthropogenic source of air pollution. Cement manufacturing is a highly energy intensive process in other word intensive fuel consumption for clinker making and resulting in emissions. The cement dust produced by cement manufacturing unit i.e. calcining, crushing, grinding, packing, loading/unloading are considered one of the most pollutants such as PM10, PM2.5, SO2 and NO2 which affect the surrounding environment.

Stack Emission monitoring from Kiln System is measured with Testo PG-350 Portable Combustion and Emission Analyzer. Ambient Air Quality monitoring is measured with portable HAZ-SCANNER™ EPAS device.

Continuous Emission Monitoring System (CEMS) was ordered in July 2019 and arrived to cement plant in November 2019. There was a flood disaster at manufacturing factory of CEMS at India, and that manufacturing delay issue was reported to ECD, MONREC. Sampling gases were not included in the CEMS procurement package and there was no supplier available in Myanmar. So STC has applied the import permit to Ministry of Commence, Myanmar with the recommendation of MONREC in March 2020, and those gases were arrived to cement plant in July 2020. The supplier from India couldn't come to Myanmar for installation, testing and commissioning of CEMS due to COVID19 situation in India and travel restriction in Myanmar. STC plant operation team was progressively installing the CEMS with the remote support of supplier from India. It took months to install as some of CEMS associated accessories such as piping system, electrical cables of sampling gases were not available in local market as those sampling gases are special gases and not many local suppliers are kept instock in Myanmar. So, we have ordered from China and some were still not arrived to cement plant and STC cement plant has been own locked down to prevent COVID19 situation during the reporting period. STC has lifted the lockdown on middle of March 2022 and is planning to complete the Testing & Commissioning within 2022.

At 16.9.2022, Continuous Emission Monitoring System (CEMS) was started to install both Line-1 and Line-2. The installation of the Continuous Emission Monitoring System (CEMS) was completed in September 2023. During the testing phase, several issues were identified: the data output cable is malfunctioning, and there is a need to change the sampling gas. STC has already notified the service provider. Currently, we are in the process of importing calibration/sampling specialty gases from overseas and awaiting resolution of licensing issues related to importing.

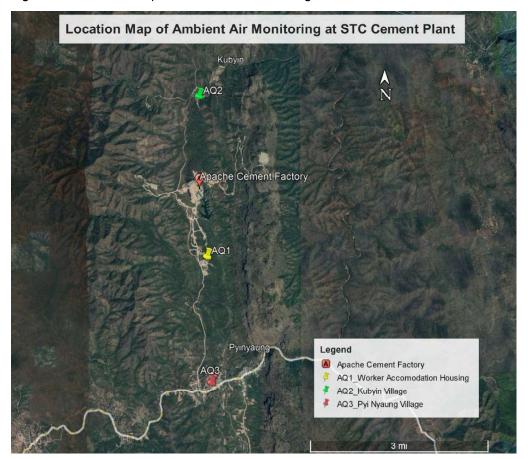
3.1.1 Monitoring Location

3.1.1.1 Stack Emission

Figure 3 and 4 show the location of Kiln Stack Emission Monitoring and Ambient Air Monitoring monthly by Myanmar National Environmental Quality (Emission) Guidelines (2015) for cement and lime manufacturing (for NOx, SO2, PM2.5, PM10 etc.) are the parameters measured.

Figure -3: Location of Kiln Stack Emission Monitoring

Line 2, Kiln Stack



Bi-Annual Environmental Monitoring Report

3.1.1.2 Location Map for Ambient Air Monitoring

Ambient air quality monitoring location had been selected by identifying potentially affected with consideration given to the prevailing wind conditions through Operation and Construction activities.

Figure - 4: Location Map of Ambient Air Monitoring at STC Cement Plant

3.1.2 Monitoring Method

Stack emission monitoring is measured by Testo PG-350 Portable Combustion and Emission Analyzer. The instrument consists of the control unit (control unit for displaying readings and controlling the analyzer box) and the analyzer box (measuring instrument). Plug-type contacts, data cable or Bluetooth (option) are used to connect the control unit to the analyzer box.

Web link: https://www.manualslib.com/manual/1284324/Testo-350.html

The portable HAZ-SCANNER™ EPAS wireless environmental perimeter air station is easily deployed as an ambient air quality monitor to measure and document critical U.S. EPA criteria pollutants including nitrogen dioxide, sulfur dioxide, ozone, carbon dioxide, particulates, VOCs, and more. The EPAS provides direct readings in real time with data logging capabilities.

Web link: https://www.skcinc.com/catalog/pdf/instructions/EPAS%20manual%20v.3.1.pdf

Bi-Annual Environmental Monitoring Report

3.1.3 Monitoring Result for Kiln Stack Emission

Stack emission monitoring device was sent to Thailand since December 2023 for calibration. All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015).

Line 1 Kiln Stack

Table – 2: Summary of Stack Emission Monitoring for Line 1 Kiln Stack

	STACK EMISSION AIR QUALITY MONITORING											
ECD/WH	O/IFC/SGN G	uideline		Proc	duction Lin	e 1 Kiln Sta	ck					
	Avenagina				Test R	lesu l t						
Parameter	Averaging Period	Value	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024				
Carbon dioxide	1 hour	%			4.67	11.9		9.62				
Oxygen	1 hour	%	Testo-350) was sent	12.76	0	Shut down	4.02				
Carbon monoxide	1 hour	625 mg/ N m3		land for enance.	31.25	1.25		65				
Nitrogen oxides	1 hour	600 mg/Nm3			41.54	1.34		88.44				
Sulphur dioxide	1 hour	400 mg/Nm3			0	0		2.86				

Line 2 Kiln Stack

Table – 3: Summary of Stack Emission Monitoring for Line 2 Kiln Stack

	and a cummary or class. Emission members give 2 min class.											
	STACK EMISSION AIR QUALITY MONITORING											
ECD/WHO	D/IFC/SGN Gu	ideline		Pro	duction Lir	ne 2 Ki l n St	ack					
	A				Test F	Result						
Parameter	Averaging Period	Value	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024				
Carbon dioxide	1 hour	%	0.05	Testo-	0.05	10.78	11.9	11.89				
Oxygen	1 hour	%	19.94	350 was	20.02	1.98	0	0				
Carbon monoxide	1 hour	625 mg/Nm3	1.25	sent to Thailand for	0.25	1.25	58.75	97.5				
Nitrogen oxides	1 hour	600 mg/Nm3	1.34	mainte nance.	0.26	1.34	101.84	97.82				
Sulphur dioxide	1 hour	400 mg/Nm3	2.86		0.85	2.86	2.86	2.86				

Bi-Annual Environmental Monitoring Report

3.1.4 Monitoring Result for Ambient Air Quality Monitoring

Table - 4: Summary of Ambient Air Quality Monitoring at Plant Site

·	Ambient Air Monitoring by Haz-scanner										
Machine Name: H	Operator	: Nay H l air	ng Oo								
	Location	: Plant Sit	е								
	HO / IFC eline			Test	Result						
Parameter	Averaging Period	Guideline Value in µg/m3	May 2024	Jun 2024	Ju l 2024	Aug 2024	Sep 2024	Oct 2024			
Nitrogen dioxide		200	82.09	34.32	43.48	75.87	71.98	40.89			
Ozone		100	61.42	23.77	26.26	45.04	47.88	24.97			
PM10		50	28.69	13.86	14.49	8.08	12.04	17.21			
PM2.5		25	7.07	6.56	5.18	3.2	5.72	7.06			
Sulphur dioxide	ulphur dioxide 24 hours			9.74	9.95	0.28	5.7	4.34			
Carbon dioxide	0	0.006	20.79	0	0	0.07					
Carbon monoxide		0.18	0.07	0.79	0.07	0.09	0.07				

Table – 5: Summary of Ambient Air Quality Monitoring at Pyi Nyaung village

Table – 5. Summary	Ambient Air Monitoring by Haz-scanner										
Machine Name: Haz-scan	Operato	r: Nay Hlair	ıg Oo								
Machine Name: maz-scanner (EPAS)			Locatio	ո։ Pyi Nyau	ng Village	•					
			Test	Result							
Parameter	Averaging Period	Guideline Value in µg/m3	May 2024	Jun 2024	Ju l 2024	Aug 2024	Sep 2024	Oct 2024			
Nitrogen dioxide		200	85.08	38.87	61.21	32.93	30.16	66.96			
Ozone		100	25.97	25.18	34.53	20.93	24.44	40.98			
PM10		50	40.61	7.85	17.89	19.10	20.58	28.78			
PM2.5		25	9.58	2.74	6.37	6.3	7.95	9.21			
Sulphur dioxide	Sulphur dioxide 24 hours 20					11	19.59	31.96			
Carbon dioxide	0	0	32.35	0.01	0.60	10.14					
Carbon monoxide		10 ppm	0.24	0.11	0.10	0.13	0.30	0.14			

SHWE TAUNG

Bi-Annual Environmental Monitoring Report

Table - 6: Summary of Ambient Air Quality Monitoring at Ku Pyin village

	Ambient Air Monitoring by Haz-scanner										
Machine Name: Haz-s	Operator	: Nay Hlain	g Oo								
	Location	: Ku Pyin V	ïllage								
			Test F	Result							
Parameter Averaging Period		Guideline Value in µg/m3	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024			
Nitrogen dioxide		200	64.46	165.21	37.44	65.27	71.60	41.79			
Ozone		100	50.07	71.30	24.24	34.98	40.65	28.28			
PM10		50	25.62	55.69	8.17	11.43	18.44	12.63			
PM2.5	24 hours	25	10.97	7.27	3.52	5.97	9.93	4.80			
Sulphur dioxide		20	82.32	17.81	2.98	5.44	13.15	4.97			
Carbon dioxide		ppm	0	0	30.41	0	0	0.00			
Carbon monoxide		10 ppm	0.18	0.10	0.07	0.05	0.07	0.07			

*Note: This data submitted to ECD on a monthly basis

Ambient air quality results are attached in Appendix-C.

3.1.5 Air Quality Index

The HAZ-SCANNER™, ambient air quality monitoring system, provides a comprehensive data of current air contaminants in a project location. Then, air monitoring data of pollutants is processed into a dimensionless unit called the "Air Quality Index" (AQI); it serves as an information medium for the people to know the air quality health of their location and takes preventative steps accordingly (public participation). As instructed from Meiktila ECD to HSE Department in September 2023, STC has updated this bi-annual monitoring report and verified with Meiktila ECD on the reporting format during last quarter of 2023. Meiktila ECD accepted the updated report during January 2023. Therefore, STC has updated the AQI results in all bi-annual monitoring reports of STC Cement Plant.

The AQI is divided into six categories. Each category corresponds to a different level of health concern. Each category also has a specific color. Thus, the AQI is a beneficial tool for the company, public, stakeholders, and regulators to understand the current state of air quality. The color makes it easy for people to quickly determine whether air quality is reaching unhealthy levels in their communities.

Figure – 5: AQI Basics for Ozone and Particle Pollution

Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects: members of sensitive groups may experience more serious health effects.
Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

Table - 7: Summary of AQI at Plant Site

				Air Q	uality In	dex (AQI	l)					
Machine Na	ame: Haz-scai	anor	Operat	Operator: Nay Hlaing Oo								
(EPAS)				Location: Worker Accommodation								
							AQI Re	sults				
Parameter	Averaging Period	Unit	May 2024	Jun 2024	Jul 2024	Sensitive Group						
PM ₁₀	24 hour	ug/m3	26	12	13	7	11	16	People with respiratory disease are the group most at risk.			
PM _{2.5}	24 hour	ug/m3	39	36	28	18	32	39	People with respiratory or heart disease, the elderly and children are the groups most at risk.			
Carbon monoxide	8 hour	ppm	1	0	0	0	0	0	People with heart disease are the group most at risk.			
Ozone	8 hour	ppb	28	11	16	21	22	11	Children and people with asthma are the groups most at risk.			
Nitrogen dioxide	1 hour	ppb	41	17	22	38	36	20	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.			
Su l phur dioxide	1 hour	ppb	10	4	1	0	3	1	People with asthma are the group most at risk.			

Table – 8: Summary of AQI at Pyi Nyaung Village

	Air Quality Index (AQI)											
Machine Na	ame: Haz-scar	nner	Operat	or: Nay I	Hlaing O)						
(EPAS)	ame. maz-sca		Location	Location: Pyi Nyaung Village								
							AQI Re	sults				
Parameter	Averaging Period	Unit	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024	Sensitive Group			
PM ₁₀	24 hour	ug/m3	37	6	16	18	19	26	People with respiratory disease are the group most at risk.			
PM _{2.5}	24 hour	ug/m3	52	15	35	35	44	51	People with respiratory or heart disease, the elderly and children are the groups most at risk.			
Carbon monoxide	8 hour	ppm	2	1	0	1	3	1	People with heart disease are the group most at risk.			
Ozone	8 hour	ppb	12	12	15	9	11	19	Children and people with asthma are the groups most at risk.			
Nitrogen dioxide	1 hour	ppb	42	19	30	16	15	33	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.			
Su l phur dioxide	1 hour	ppb	44	14	4	6	10	17	People with asthma are the group most at risk.			

SHWE TAUNG

Bi-Annual Environmental Monitoring Report

Table - 9: Summary of AQI at Ku Pyin Village

				Air Q	uality Inc	lex (AQI)					
Machine Na	ame: Haz-scaı	nnor	Operat	or: Nay I	Haing Oo							
(EPAS)	1111 6 . 11a2 - 56a1	illei	Location	Location: Ku Pyin Village								
				AQI Results								
Parameter	Averaging Period	Unit	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024	Sensitive Group			
PM ₁₀	24 hour	ug/m3	23	51	7	10	17	11	People with respiratory disease are the group most at risk.			
PM _{2.5}	24 hour	ug/m3	54	40	19	33	52	27	People with respiratory or heart disease, the elderly and children are the groups most at risk.			
Carbon monoxide	8 hour	ppm	1	1	0	0	0	0	People with heart disease are the group most at risk.			
Ozone	8 hour	ppb	27	33	10	16	19	13	Children and people with asthma are the groups most at risk.			
Nitrogen dioxide	1 hour	ppb	32	86	18	32	36	21	People with asthma or other respiratory diseases, the elderly, and children are the groups most at risk.			
Su l phur dioxide	1 hour	ppb	40	9	1	3	7	1	People with asthma are the group most at risk.			

3.1.6 Monitoring Result for Dust Deposition

STC monitored dust deposition with 15 points at cement plant and limestone quarry, cement plant housing/ accommodation area, Ku Pyin and Pyi Nyaung village. The use of fabric/bag filter system and electrostatic precipitator to collect and control fine suspended particulate emissions are implemented in both lines of cement plant. Water suppression was also undertaken on the roads by using the water from sedimentation ponds to mitigate dust emission on surrounding area in plant site, quarries and plant accommodation area.

Please refer the table 7 for dust deposition monitoring results from May 2024 to October 2024.

Table – 10: Dust Monitoring Location

No	Monitoring Location	Latitude	Longitude
1	STC Accommodation (Ingyin Hostel)	20°51'23.1"N	96°23'34.7"E
2	STC Accommodation (55acres)	20°50'54.5"N	96°23'34.8"E
3	Ku Pyin (Behind Library)	20°53'26.9"N	96°23'24.8"E
4	Ku Pyin (Primary School)	20°53'25.7"N	96°23'33.6"E
5	Pyi Nyaung (Near Main Road)	20°49'09.5"N	96°23'50.9"E
6	Pyi Nyaung (Information Center)	20°49'03.9"N	96°23'40.6"E

Figure – 6: Dust Deposition Monitoring

Table – 11: Dust Deposition Monitoring results at Cement Plant Accommodation, Ku Pyin and Pyi Nyaung villages from May 2024 to October 2024

Samplers: Nay Hlaing Oo			Dust Depo	osition Mor	itoring		
			T	est Result			
Parameter	Australia & New Zealand Guideline (g/m2/Day)	M ay 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024
STC Accommodation (Ingyin Hostel)		1.35	0.36	0.42	0.35	0.35	0.32
STC Accommodation (55acres)		0.63	0.26	0.34	0.21	0.15	0.21
Ku Pyin (Behind Library)	1.191	1.21	0.35	0.50	0.24	0.36	0.12
Ku Pyin (Primary School)	(g/m2/Day)	0.80	0.36	Damage	Damage	0.40	0.22
Pyi Nyaung (Near Main Road)		0.89	0.36	0.42	0.40	Damage	Damage
Pyi Nyaung (Information Center)		0.58	0.31	0.39	0.28	0.28	0.44

Bi-Annual Environmental Monitoring Report

3.1.7 Air Quality Mitigation Measures

Table – 12: Air Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
Air	The discharge to kiln stack at both new and existing plant will be fitted with continuous emission monitoring capable of real-time measurement of NO2, SO2, Particulate Matter and O2 and transmitted to the operator control room. They will not exceed those outlined in Myanmar National Environmental Quality Emission Guidelines (2015) for cement and lime manufacturing and should be further reduced as far as practicable. New kiln stack shall be fitted with sampling platform and two sampling ports at 90 degrees. Sampling ports should be four-inch (minimum) inner diameter threaded pipe connections with a cap. This is primarily to	The Continuous Emission Monitoring System (CEMS) was ordered in July 2019 and arrived at the cement plant in November 2019. A flood at the CEMS manufacturing factory in India caused delays, reported to ECD, MONREC. Sampling gases were not included in the procurement package, and no local supplier was available, so STC applied for an import permit in March 2020. The gases arrived in July 2020. Due to COVID-19 travel restrictions, the Indian supplier couldn't come for installation, which STC's team handled with remote support. Installation was delayed due to unavailable accessories, which were ordered from China. STC lifted its lockdown in March 2022, planning to	Initialization of 3 earnylog gord on each Kin Stack for CEMS
Quality	allow calibration of in stack continuous monitoring systems but was also allow for monitoring of additional parameters if needed in the future.	complete testing and commissioning within the year. Installation of CEMS on both lines started on September 16, 2022, and was completed in September 2023. During testing, issues with the data output cable and sampling gas were identified. STC notified the service provider and is currently importing calibration gases, awaiting resolution of licensing issues.	Martin Soul Empire Lorson
	Emission concentrations of NOx, SO2 and PM from existing and proposed kiln system and clinker cooler will exceed those outlined in Myanmar National Environmental Quality Emission Guidelines (2015) for cement and lime manufacturing and should be further reduced as far as practicable.	Regular monitoring (See in Section 3.1.3 for stack emission monitoring results)	Monthly Stack Emission Montroring Use L tim York Line Torix Line 2 din York
	 An occupational exposure monitoring program for workers will be put in place to monitor indoor air quality. 	Completed by HR & OHS. Result TBA ECD conducted test for Exposure Limits	
	Reduce number of material transfer points by simple, linear layout for material handling operations;	Completed and installed for line 1 and line 2 design	Mark The Activation Section 2 of the Activation Section Section 2 of the Activation Section Sectio
	Use of enclosed belt conveyors for material transportation and emission controls at transfer points;	Implementation on line 2	
	 Regular cleaning of conveyor belt systems; 	Included in PME scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

Crushed and blended raw materials should be stored in covered or closed bays;	Additional silo constructed in line 2	
Pulverized coal should be stored in silos or closed storage;	Implemented	
Clinker should be stored in covered or closed bays or silos with dust extractions;	Implemented	
Routine plant maintenance to keep air leaks and spills to a minimum;	Included in PME and PRD scope (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	Call Employment To
Material handling processes including crushing operations, raw milling and clinker grinding should be undertaken in enclosed systems maintained under negative pressure by exhaust fans. Dust should be removed using cyclones and bag filters; and	Equipped with cyclones and bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
 Implementation of automatic bag filling and handling systems; 	Implemented both line 1 and line 2	
 Use of electrostatic precipitators (ESPs) or fabric filter systems to collect and control fine suspended particulate emissions in the kiln gases; 	Installed (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
Use of cyclones to separate larger particulates of cooler gases followed by fabric filters and finally	Equipped with cyclones and bag filters line 1 and line 2 (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	
Mild dust should be captured and recycled using fabric filters within the mill.	Equipped with bag filters (Regular Maintenance of bag filter and electrostatic precipitator, see in Appendix)	

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

3.1.8 Evaluation

According to Air Quality Monitoring of Stack Emission and Ambient Air Quality Monitoring, the results of stack emission monitoring are under guideline value while those of AAM are exceeded in some values during summer season. Ambient Air monitoring was monthly tested at location of Sensitive Air Respecters such as Cement Plant Accommodation, and nearby villages which are Pyi Nyaung and Ku Pyin as in Cement Plant EIA report (2018). All results are within Myanmar National Environmental Quality (Emission) Guidelines (2015), except higher results of PM₁₀ and PM_{2.5} during summer season. STC has noted that there was a lot of forest bush fires set up by some villagers to clean the bushes, nearly every day.

Figure - 7: Forest Fire affected the Ambient Air Quality around STC Cement Plant

STC has investigated the reason of SO_2 result more than Myanmar National Environmental Quality (Emission) Guidelines (2015) as STC uses the low Sulphur content in coal that used as fuel for cement production as stated in STC Cement Plant EIA report. STC has analyzed the monitoring results from the portable HAZ-SCANNERTM EPAS device and found out that SO_2 results were a lot higher during day time and less value at night time. This indicate that the plant is operating 24hours and it couldn't be less during night time.

AQI across the globe considers the number of pollutants (most of the developed countries and some developing countries considers PM_{2.5} to measure the overall status of air quality being monitored), averaging time for which pollutants are measured, calculation method to compute air quality indices for each pollutant, calculation mode to aggregate the overall index, scale of an index, categories, color coding scheme, and related descriptive terms of the pollutants. There are many air quality index models to represent air quality level in the world. STC selected to assess ambient air quality results in Pyi Nyaung area based on AirNow, which is a partnership with the U.S. Environmental Protection Agency (EPA), color-coded index standards.

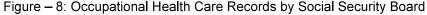
By analyzing all the AQI results, it is noted that PM_{2.5} values are majorly impacted by human activities (forest firing & open burning, etc.) from surrounding environment. STC will raise the public awareness among cement plant community and also disclosed these air quality monitoring results and AQI results at Pyi Nyaung Information Center and Ku Pyin library according to STC Stakeholder Engagement Plan.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

STC engaged 3rd party Environmental consultant as auditor and the auditor advised that this was the case as forest fires in the hills surrounding the plant were numerous at the time of the audit and consistent haze was present over the general area. The Auditor considered that the forest fires are contributing to elevated particulate readings being recorded by STC and elevated readings cannot be solely apportioned to emissions from cement plant and associated facilities.

Therefore, STC was looking other factors that can be impacting on SO₂ results and found out that it was related to emission of mobile vehicles that were higher SO₂ than Kiln emission by using Testo PG-350 Portable Combustion and Emission Analyzer at STC Apache cement plant. There were a lot of heavy machineries and trailer trucks movement during day time and only trailer trucks movement during night time. So STC has raised awareness among the vehicle drivers to stop when they are parking or waiting, with sticker campaign "Turn Off Your Engine While Waiting or Parked" at Apache Cement plant.


These were a notable deterioration in regional air quality was found at Pyi Nyaung area. Moreover, cold air during the cold season can't hold as much moisture, and so the air is usually drier during winter. These habits were also noted on contributing factors of higher results of PM₁₀ and PM_{2.5}.

Moreover, there were regular device servicing and maintenance with NANOVA, authorized supplier of Myanmar of EPAS device, in January and March 2020. STC noted the Haz-scanner EPAS SO2 sensor has some issue as the ambient air quality monitoring result of SO2 was complied with Myanmar National Environmental Quality (Emission) Guidelines (2015) after NANOVA, the local authorized support of Myanmar.

Carried out sensor checking, testing using zeroing filter and internal tube cleaning by supplier 3 times due to sensor error reading of Haz-scanner devices.

The use of fabric filter system and electrostatic precipitator to collect and control fine suspended particulate emissions are implemented. Water suppression are also undertaken on the roads to mitigate dust emission on surrounding area in plant site and accommodation area. (See in Appendix A)

Moreover, to safeguard occupational health, STC collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

Bi-Annual Environmental Monitoring Report

3.2 Water Quality Monitoring

Monitoring of water quality regularly is quite necessary for the assessment of water quality for beneficial purposes. Operation is dry process and do not generate wastewater. Sanitary wastewater from office and household are discharged to bio tank and treated wastewater are monitored in compliance with the NEQEG on BOD, COD, pH, SS, oil & grease, TN & TP and as per WHO Drinking water guidelines.

3.2.1 Monitoring Location

Figure – 9 shows the location of Water Quality sampling point monthly on WHO Drinking Water Guidelines and IFC Effluent Water Guidelines for Water Quality Monitoring (e.g. pH, Color, Turbidity, Iron, BOD, COD etc.) are the parameters for measurement.

Table-13: Water Sampling location

No	Sampling Location	Latitude	Longitude
1	Ku Pyin Stream	20°53'22.92"N	96°23'23.92"E
2	Ye Shin Stream	20°50'24.08"N	96°23'26.81"E
3	Supply Water	20°51'35.3"N	96°23'37.7"E
4	Sedimentation Pond 5	20°52'10.60"N	96°23'16.67"E
5	Sedimentation Pond 9	20°50'51.17"N	96°23'45.02"E

3.2.1.1 Location Map of Water Quality Sampling Points

Figure – 9: Water Quality Sampling Points

Bi-Annual Environmental Monitoring Report

3.2.2 Monitoring Result for Water Quality

Table-14: Ku Pyin Stream Water Quality Monitoring Result

	Ku Pyin Stream Water Supply Water Analysis											
ITEM	WHO Drinking Water Guideline	EQEG Guideline	Baseline Results	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024			
рН	6.5 – 8.5	6 - 9	6.3		7.9	8.3	8.5	8.5	8.6			
Color	15 PCU	-	-		0	65	35	15	10			
Turbidity	5 NTU	-	-		0.71	21.6	15.3	3.89	0.44			
Calcium hardness	500 mg/l	-	-	No	270	225	180	246	200			
Chloride (CI)	250 mg/l	-	-	water	4	6	2	2	1			
Sulphate (SO4)	200 mg/l	-	-		20	20	10	10	10			
TSS	50 mg/l	50 mg/l	23		3	67	41	13	3			
Nitrate	50 mg/l	-	-		4	-	7	5.9	16			

Table-15: Ye Shin Stream Water Quality Monitoring Result

Table 15. Te offin e	Ye Shin Stream Supply Water Analysis (Near Pyi Nyaung)											
ITEM	WHO Drinking Water Guideline	M ay 2024	Jun 2024	Ju l 2024	Aug 2024	Sep 2024	Oct 2024					
pH	6.5 - 8.5		7.8	7.9	8.2	Cannot collect	8.3					
Color	15 PCU		20	25	5		10					
Turbidity	5 NTU		1.11	1.36	4.36		7.21					
Calcium hardness	500 mg/l	No	207	195	150	sample	168					
Chloride (CI)	250 mg/l	water	4	6	5	because	2					
Sulphate (SO4)	200 mg/l		20	20	10	of the	10					
TSS	50 mg/l		10	8	17	flooding	22					
Nitrate	50 mg/l		9.1	-	5.2	1.00000	8.4					

Table-16: Lower Reservoir Water Quality Monitoring Result

	Lower Reservoir Supply Water Analysis										
ITEM	WHO Drinking Water Guideline	EQEG Guide line	Baseline Results	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024		
рН	6.5 – 8.5	6-9	7.6	8.3	8.6	8.5	8.8	8.4	8.5		
Color	15 PCU	-	-	60	100	40	15	20	25		
Turbidity	5 NTU	-	-	9.83	10.2	7.74	7.93	16.9	5.49		
Calcium hardness	500 mg/l	-	-	90	135	120	129	99	126		
Chloride (CI)	250 mg/l	-	-	5	5	5	3	3	3		
Sulphate (SO4)	200 mg/l	-	-	20	20	20	20	10	10		
TSS	50 mg/l	50 mg/l	11	40	37	37	34	41	22		
Nitrate	50 mg/l	-	-	4.8	26	-	7.6	6	7		

Lower reservoir supply water test results from external laboratories are attached in Appendix-(B-4).

Table-17: Sedimentation Pond-5 Surface Water Test Result

	Sedir	mentation F	Pond 5 Surfa	ace Wate	r Test Re	sult			
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	May 2024	Jun 2024	Jul 2024	Aug 2024	Sep 2024	Oct 2024
pН	6~9	6 ~ 9	7.6	7.7	8	8.3	8.1	8.1	8.2
Chemical Oxygen Demand (COD)	0~125 mg/l	125 mg/l	41.5	68	96	93	60	55	12
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	6.5	43	13	26	_	_	-
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	215.5	130	99	87	48	28	18
Total Nitrogen	10 mg/l	10 mg/l	1.7	ND	1.65	-	2.05	2.75	1.78
Total Nitrate	44.29 mg/l	-	-	ND	7.3	-	0.3	12.2	7.9
Total Phosphorous	2 mg/l	2	0.06	0.2	0.2	0.2	0.3	0.3	0.1
Oil and grease	10 mg/l	10 mg/l	DL	ND	ND	ND	ND	ND	ND
Total Coliform Bacteria	-	100 ml	45.50	-	-	-	-	-	-

Table – 18: Bio Tank Effluent Discharge to Sedimentation Pond 9 Test Results

	Bio Ta	ınk Effluen	t Discharge	to Sedime	entation F	ond 9			
Parameters	IFC Waste Water Guideline	EQEG Guide line	Baseline Results	May 2024	Jun 2024	Ju l 2024	Aug 2024	Sep 2024	Oct 2024
pН	6 ~ 9	6~9	-					8.2	8.2
Chemical Oxygen Demand (COD)	0~125 mg/ l	125 mg/l	-					32	33
Biological Oxygen Demand (BOD)	0~30 mg/l	30 mg/l	-					-	-
Total Suspended Solid (TSS)	Max 50 mg/l	50 mg/l	-					33	19
Total Nitrogen	10 mg/l	10 mg/l	-	No water	No water	No water	No water	2.42	4.49
Total Nitrate	44.29 mg/l	-	-					10.7	19.9
Total Phosphorous	2 mg/l	2	-					2.6	2.3
Oil and grease	10 mg/l	10 mg/l	-					ND	ND
Total Coliform Bacteria	-	100 ml	-						-

^{*} There was no effluent water from bio tank from May 2024 to August 2024. Laboratory results for water quality are attached in Appendix-B.

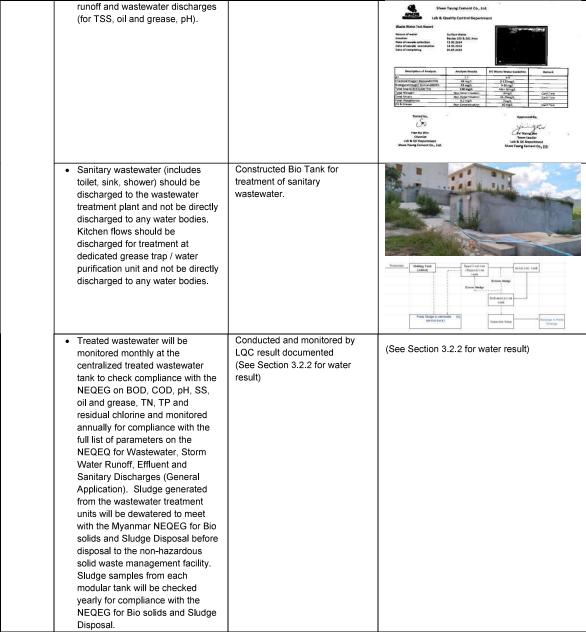
Bi-Annual Environmental Monitoring Report

3.2.3 Water Quality Mitigation Measures

Table - 19: Water Quality Management

Affected Aspect	Mitigation Measures	Action Taken	Photos
Surface Water Quality	Implementing storm water management practices to manage the flow of storm-water, prevent uncontrolled migration and minimize erosion and sediment transport from project facilities and disturbed areas. Construction of a dedicated drainage network to intercept and diversion runoff;	Constructed stormwater drains around the cement plant channel to sedimentation ponds	Suitage water flow Calcument area Culvert Circinotes for Laxassifors loss Figure (2) Drainage for catchment area
	Divert runoff from the mudstone quarry to an appropriately sized and maintained sedimentation pond to allow adequate retention time for suspended solids to settle;	Constructed sedimentation pond dual stage.	Sodimentation pond from storm water parofil to allow adequate releasing time for suspended eclics to set to before others would not a visu. Location Map of Sedimentation Pond at \$10 Site
			Layout Plan for Stormwitter Diversion Area & and B Lawrence From Fig. 1 Lawrence From
	Divert runoff from the limestone quarry to the wetland created by STM via a weir to remove suspended solids before entering the wetland;	Constructed sedimentation pond dual stage.	Frigure 527 Devisage for sur-lineary spin
	Baffles or other measures to reduce the velocity of runoff downhill slopes should be installed to minimize scouring;	Visual monitoring by MNE	Figure (1) Zoning for slope protection measures

Exposed areas and over dumps should be revege quickly as possible.		g monsoon	
STM will prepare and im Storm water Managemer considering the mitigatio committed above.	t Plan construction on pro Line 2 area. Line 1 constructed since 2	ogress for area was 2014.	Google Earth m water flow, center plant and linestone mine area
All areas used to store a handle coal, laterite and should be paved and sur by perimeter drains. For storage area, it should be	limestone during monsoon se rounded the coal		Coal Stockpile Storage @ 501 Area
Runoff from the laterite a limestone staging areas diverted to retention ponmay be used for greenin suppression or discharge onsite reservoir.	shall be dual stage and reu gardening and dus gardening and dus dus to the	se for t control. Coal Staging 5	tockpile: Double Stage Sedimentation Fond
For the coal storage area has agreed to cover this Water from the roof will be diverted via storm water retention ponds and may for greening, dust suppred discharged to the onsite Runoff collected by the indrains (small volume) with covered coal storage are diverted for treatment at wastewater treatment plants.	area. triple stage. drains to be used ession or reservoir. aterceptor hin the a will be the	entation pond	Stage Sedimentation Pond



Discharges into the reservoir and any runoff discharged to surface streams should be monitored monthly for compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site runoff and wastewater discharges (for TSS, oil and grease, pH).	Conducted and monitored by LQC result documented (See in 4.3.2 water result)	Shree Taung Cement Co., Ltd. Lab & Quality Control Department Metter Genity Test Record Mission of water Location State Control Department Location Stat
Lightning protection should be installed at all areas used to store bulk fuel and other flammables;	Installed at fuel depot.	Constructed bunded handstand with containment for 117% of the valume of stored facilities and equipped with at water apparator heatilized lightness protection post.
 The fuel storage facility should be constructed on bunded hardstand with containment sufficient for 110% of the volume of the single largest tank; 	Equipped.	Constructed bunded handstand with continement for T15% of the volume of stored faul and requipped with of-waller expended handless legislating protection post.
 Discharges from this bunded area should pass through an oil-water separator; 	Installed	Constructed burded fundational with containment for 11% of the volume of stored balf and equipped with of-early segment. Invalided by their grounded on post.
Spill Response Plan should be developed and implemented; (conducted awareness training and deliver pamphlet to relevant employees in the plant)	Approved and implemented	SPILL CONTROL & RESPONSE TRAINING SPILL CONTROL & RESPONSE TRAINING Develop training materials for spill control response. Conducted training and drift for Spil Response Procedure Response Procedure Baldier Each MSDOS Each MSDOS
Discharges from the coal staging area should be monitored monthly	Conducted and monitored by LQC result documented (See in	The department of the control of the
for compliance with Myanmar National Environmental Quality (Emissions) Guidelines for site	Section 4.3.2 for water test result)	

Bi-Annual Environmental Monitoring Report

*Data from Environment shared google drive

Notice: Presently all the discharge from bund wall areas directly channel to sedimentation pond.

3.2.4 Evaluation

The establishment of sewage and sanitary waste management and storm water management is executing in plant site. Since the dry process is used for the cement production and the second line is also adopted a similar dry process as the first line, do not generate wastewater from first line and second line production. Discharge sanitary wastewater from plant office and household accommodation are diverted for treatment at the wastewater treatment plant. Treated wastewater from water treatment plant are monitored monthly in compliance with the NEQEG guideline. Wheel washing bay shall be installed at the cement plant guardhouse to avoid cement trail trucks tracking dirt onto public sealed roads and generating dust.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

3.3 Noise Monitoring

The nearest representative noise sensitive receptors (NSRs) that may potentially affect by the noise impact due to the Project are identified as Pyi Nyaung and Ku Pyin villages. STC operate noise monitoring twice a year in accordance with Mudstone Environmental Monitoring Plan and results are shown in Table 20 below:

3.3.1 Location Map of Noise Quality Monitoring Points

Figure - 10: Noise Quality Sampling Points

Table - 20: Noise Monitoring Results in Pyi Nyaung and Ku Pyin villages

Noise Monitoring Results							
Machine Name: KIMO DB 200 Operator: Nay Hlaing Oo						llaing Oo	
		ECD/ WHO / IFC Guideline				Test Result	
Location	Noise Leve	and IFC el Guideline, B(A)	Guideline, Baseline Noise Receptor		Receptor	Day (07:00 – 22:00 hrs), dB (A)	Night (22:00 – 07:00 hrs) dB (A)
	Day	Night	Day	Night			
Pyi Nyaung Village 55 45		-	-	Residential	80.2	63.4	
Ku Pyin Village	55	45	-	-	Residential	53.9	52.5

3.3.2 Evaluation

The noise level assessment for Pyi Nyaung Village reveals significant exceedance of NEQEG and IFC guidelines, with measured daytime levels at 80.2 dB(A) and nighttime levels at 63.4 dB(A). The primary cause of this excess noise is not related to Shwe Taung's cement plant or quarry operations but rather due to the village's proximity to the Meikhtila-Taunggyi Highway Road, which experiences heavy vehicular traffic, particularly during nighttime hours. This high traffic volume poses a serious concern for community health and well-being, given its continuous nature.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

3.4 Soil Quality Monitoring

Soil quality monitoring was undertaken in April 2023 in Ku Pyin village. The locations for soil sampling are provided in Figure 12. Two soil samples were taken at each sampling location These samples were sent to the laboratory analyzed by Department of Agriculture (Land Use), Ministry of Agriculture, Livestock and Irrigation (MOALI). Parameters measured included Moisture, pH, Electrical Conductivity, Organic Carbon, Humus, Total Nitrogen, Ca²⁺, Mg²⁺, K⁺, P, K₂O, Water Soluble SO₄²⁻. Soil quality monitoring results for laboratory analyzed parameters are shown in Table 5.

3.4.1 Location Map of Soil Quality Monitoring Points

Figure - 11: Soil Quality Sampling Points

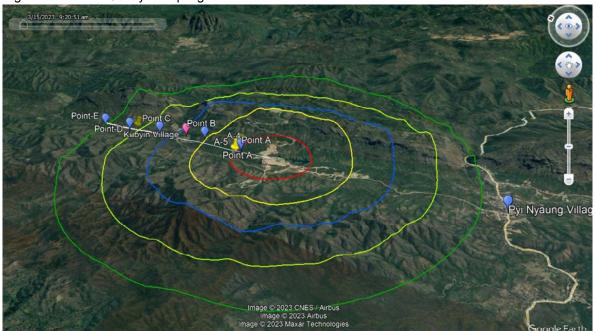


Table - 21: Soil Monitoring Results in Ku Pyin village

Parameter	Unit	Baseline	Sample A	Sample B	Sample C	Sample D	Sample E	Remark
Moisture %	%	14.6	3.13	2.23	2.64	4.99	2.65	
pН	рН	6.6	7.12	6.90	7.28	7.99	6.66	
Electrical Conductivity	dm/s	0.77	0.08	0.06	0.09	0.15	0.06	
Organic Carbon%	%	1.62	1.37	1.04	1.89	1.98	1.25	
Humus	%	-	2.36	1.79	3.25	3.41	2.15	
Total N%	%	-	0.108	0.107	0.107	0.165	0.107	
Ca ²⁺	Meq/100gm	-	14.43	9.53	13.68	22.43	15.06	
Mg ²⁺	Meq/100gm	-	2.75	0.68	1.37	1.40	2.74	
K⁺	Meq/100gm	-	0.54	0.41	0.43	0.47	0.41	
Р	ppm	-	0.41	0.41	0.41	0.42	0.41	
K₂O	mg/100gm	-	25.39	19.02	20.33	22.11	19.12	
Water Soluble SO ₄ ²⁻		-	0.04	0.08	0.08	ND	0.04	

3.4.2 Evaluation

Agronomist stated that the current outcomes are satisfactory and that it would be beneficial for STC to implement small-scale plantations in the Ku Pyin area if STC can demonstrate the success of planting as a model plantation. He then responded that all test results have been reliable for at least a year.

Bi-Annual Environmental Monitoring Report

3.5 Waste Management Monitoring

3.5.1 Generation of Non- Hazardous Waste

In Shwe Taung Cement Factory, collect non-hazardous waste generated from plant site and accommodation area every day and dispose them to Temporary Non-hazardous Storage Area. For kitchen wastes, compost or use as animal feed in nearby villages. On the other hand, dispose laboratory and clinical wastes to Meikhtila Incinerator, Meikhtila District, Mandalay Region, approved by Meikhtila City Development Committee and have plan to dispose hazardous wastes to Golden Dowa Eco-system Myanmar Co., Ltd., Accredited Waste Management Company. Figure 12, 13 and 14 shows location maps of waste disposal area and waste collection points.

Figure – 12: Location Map of Collection Points of All Generated Wastes from Plant Site and Accommodation Area

Figure - 13: Location Map of Disposal Sites for Waste from Plant and Accommodation Area

Figure – 14: Location Map of Site Waste Dumping Area (Scrap Yard)

Bi-Annual Environmental Monitoring Report

Table - 22: Generated Non-Hazardous Waste

STC Non-hazardous Waste Generated from May 2024 to October 2024					
Month	Weight (kg)	Remark			
May 2024	18920				
June 2024	17180				
July 2024	18660	Disposed to Temporary Non-hazardous			
August 2024	21260	Solid Waste Storage Area			
September 2024	17280				
October 2024	17120				

3.5.2 Generation of Hazardous Waste

Table - 23: Generated Hazardous Waste

	STC Generated Hazardous Waste					
Sr.	Date	Type of Waste	Quantity	Amount (kg)	Treatment Facility	Remarks
1	7 August 2023	Clinical, Laboratory and Contaminated Oil rags	-	1740 kg	Meikhtila Municipal Incinerator	Disposal

3.5.3 Waste Management Mitigation Measures

Table - 24: Waste Management Mitigation Measures

Affected Aspect	Mitigation Measures	Action Taken	Photos
Waste Manage ment	A waste management plan (WMP) for the project has been developed that include the following as a minimum:	Approved waste management plan	Figure 1. The Winder Historicity pile "Milk" ** Millermite: the arround of worke produced - Throuse built poping report has paragraph gods - Three Milkermites are reported by the produced - Three Milkermites are reported by the produced - Three Milkermites are reported by the produced - Three Milkermites are reported by the produced by the produced - Three Milkermites are produced value added product (str., company) - Three Milkermites are reported by the produced of product (str., company) - Consideration of Milkermites are reported by the produced of the product - Orders now has been been been been facility - Offstee disposal by specialize contractor.

•	A waste inventory should be created to establish the types of wastes;	Established (dispose Non-hazardous waste to Temporary N-H Solid Waste Storage area whereas Hazardoous waste will be disposed to DOWA, accredited waste management company. Clinical and Laboratory waste are disposed to Meikhtila Incinerator, approved for disposal by Meikhtila City Development Committee)	Data of Wests Generation of STC (164-22) SECTION CONTROL OF STC (
•	Identify disposal routes (including transport options and disposal sites) for all wastes generated;	Identified waste streams (See Figure-11 & 12 for waste collection point and disposal site)	to it impaid? Can It be easily recyclade? Ves No. Ves No. Appropriate Disposal
•	Segregate wastes and recycle wherever possible;	Segregated scrap materials for resale and reuse (See Figure-13 for Scrap Yard Area)	Script Area
•	Hazardous wastes should be segregated and disposed separately from non- hazardous wastes using a license contractor;	Hazardous waste treatment by DOWA and non-hazardous waste, municipal waste disposed at Temporary Non-hazardous solid waste storage area. Medical and laboratory waste dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee)	SHWE TRAINS SHOW TRAINS Sharp terms (Chair Good Control of the
	Hazardous wastes shall be labelled and stored in sealed containers that are stored on bunded hardstand. Hazardous wastes that are unsuitable for disposal in the cement kiln (such as waste oil drums) shall be returned to the manufacturer or trucked to Mandalay for appropriate disposal at a hazardous waste facility;	Hazardous waste are collected and deposed to dispose to Meikthila Incinerator, approved by Meikhtila City Development Committee.	Topic of the control

Bi-Annual Environmental Monitoring Report

Waste oil should be used for kiln start-up;	Resale by ADM	elu Company de la company de l
		L s Dc' s L Delu s Delu
Organic waste for composting or use as animal feed in nearby villages;	Organic waste (vegetables waste) are collected and composed to use as a fertilizer. Organic waste (food waste) are collected by locals for as animal feed	
Waste suitable for use as fuel in the Mudstone Quarry should be considered; and	Used waste oil resale to local merchant	
The existing landfill is not lined and should be only used for inert (non-reactive) and non-hazardous waste only. The existing landfill is not lined and should be only.	Implemented (Constructed Old Temporary Non- hazardous solid storage area for disposing Non-hazardous waste and operated it from 2012 to June 2019. Replantation in old place after closure. After inspection of New Temporary Non- hazardous solid storage area from ECD and governmental organizations in 5 July 2019, operate that one until now.)	Forms familif town bushfield with top soil and constanted. Tomporary Soile Non-hounded awards shows outpool with the families. Temporary Soiled Non-hazzardous wastes storage inspected by ECD and other government antities for the approval of EIA.

3.5.4 Evaluation

Implementing principles of the waste hierarchy in the most responsible manner (reduce, reuse, recycle, reclaim, dispose) in the plant site by conducting tool box talk, delivering pamphlet, offering waste bin in each plant site department and accommodation area, undertaking simultaneous mass housekeeping 9 campaigns occasionally, using waste manifest form, daily conducting housekeeping in the site and surrounding area to get awareness on waste reduction, segregation, collection and disposal practices that avoid impacts on the physical, biophysical and social environments.

Bi-Annual Environmental Monitoring Report

4. Biodiversity Action Plan Implementation

STC is continuous implementing Biodiversity Action Plan (BAP) with regular Transect Survey, Invasive Survey, Wildlife Market Survey, maintaining the Ecosystem Restoration Plantations and 3 nurseries, and raising biodiversity conservation activities around the Limestone and Mudstone Quarry operation.

Table-25: Biodiversity Action Plan Implementation

	Biodiversity Action Plan Implementation					
No.	Type of Survey	Implementation Month	Process	Remark		
1	Invasive Species Survey	December 2023	Done			
2	Transact Survey	January 2024	Done			
3	Transact Survey	February 2024	Done			

Invasive Species Survey

These dominant species mostly found cement plant and should control in time. Mimosa pudica (Htikayone) should collect and burned to control distribution. Leucaena leucocephala, (Bawsakaing) should cut the tree before fruiting season and dig the root to stop coppicing. Chromolaena odorata (Bizat) should cut the bushes and burn before flowering season. They can reproduce especially in wind dispersal methods and sometime by animals and trucks. Detail survey will make in quarterly to monitor the distribution of invasive species. We should also use herbicide to control some invasive species.

Figure - 15: Invasive Species Survey

Chromolaena odorata

Chromolaena odorata

Mimosa pudica

Leucaena leucocephala

Table-26: Ecosystem Restoration Plantation List by years

		, ,		
No.	Year	Acre	No. of trees	Remark
1	2016	33	17820	
2	2017	15	5950	
3	2018	50	60500	
4	2019	115	50100	
5	2020	150	81100	
6	2021	150	81100	
7	2023	65	35100	
	2024 (Total)	578	331670	

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

STC has successfully implemented an ecosystem restoration initiative by establishing plantations for land leased agreement with the government since 2016. The maintenance of these plantations is diligently carried out through routine operations, including weeding, patching, and fire protection across all areas.

Table-27: Maintenance of Ecosystem Restoration Plantations (ERP)

Location	Particular	Patched Area in 2023	Patched Area in June 2024	July	August	September	October
				1st Weeding	Patching	2nd Weeding	2nd Weeding
Near Apache	ERP 33 Ac	7 Ac	-	7 Ac (100%)	2100 Nos	7 Ac (100%)	-
Near Apache	ERP 65 Ac	33 Ac	_	33 Ac (100%)	700 Nos	33 Ac (50%)	33 Ac (100%)
South Pyi Nyaung	ERP 100 Ac	16 Ac	-	16 Ac (100%)	1000 Nos	0%	16 Ac (100%)
		1	9 Ac (4860 Nos.)	9 Ac (100 %)	Ī	9 Ac (100%)	-
Grand Total				65 Ac (100%)	3800 Nos.	65 Ac (100%)	

Between May and October 2024, Shwe Taung carried out comprehensive ecosystem restoration activities within the Pyi Nyaung and Ku Pyin Reserved Forests. The activities commenced in late May with patching operations across 100 acres of the Pyi Nyaung Reserved Forest, successfully restoring 4,860 plants by mid-June using zero-burning techniques. In July, a first round of weeding was completed in this area, with a status check conducted on July 9 confirming its success. In August, STC initiated patching activities in both the Ku Pyin and Pyi Nyaung Reserved Forests, planting a total of 3,800 plants, with the process wrapping up by mid-month. Fertilization activities were subsequently completed by the end of August. A second round of weeding commenced in September, achieving 65% completion by the end of the month, and was fully finalized in mid-October, as confirmed by HSE for the status checks.

Figure – 16: Maintenance activities at Ecosystem Restoration Plantations

STC took zero burning practice in all plantation to protect carbon emission from our activities. It may lead to develop slow growth of some species such as Kyun and Myanmar Kokko. The grow rate of Sein Pan is the best growth rate that average is about 7 ft in South Pyi Nyaung plantation. Mazili grow rate is the best in plantation 65 acre near cement plant. Padauk was damage due to domestic buffalo from near village. STC will mitigate to get better growth rate plantation in next year by changing of planting pattern, selection of species, preparation of soil before planting.

STC will operated fire protection for all patched area in plantation to protect wild fire and its damages before dry seasons.

SHWE TAUNG Building Materials

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

5. Corporate Social Responsibility

STC cement plant implements Corporate Social Responsibility (CSR) to communities and release newsletter in quarterly, see in Appendix – D.

6. Occupational Health and Safety

Workers are at risk of occupational health and safety incidents. Such incidents may be linked to the physical environment in which they operate, the procedures they have to abide by or the on-site health and safety culture.

Shwe Taung has existing occupational health and safety policies and procedures in place at the mudstone quarry and these are applicable for the expansion project. These procedures include requirements in terms of operational safety (blasting, excavator, ladder, crane and forklift management, working at height, personal protective equipment use, lifting operation, emergency management, etc.). With the support of the IFC, STC has retained international consultants to assist with the review, update and implementation of its occupational health and safety procedures.

Generally, there is one to two daytime blasting occurred at mudstone quarry within two to three months. Blasting is thus infrequent and will be managed under the Standard Operating Procedure (SOP) for blasting and excavation to ensure safety of staff and community.

6.1 Fire Safety Measures

In compliance with the directives of the Myanmar Fire Services Department, STC has implemented a series of fire safety measures to mitigate fire hazards in the workplace. These measures include conducting regular fire drills and maintaining firefighting equipment.

The main objective of regular fire drills is to ensure all staff are familiar with fire safety protocols and the use of firefighting equipment. Training were conducted to familiarize staff with the operation of a fire truck in case of an emergency. Moreover, all employees were trained on the correct procedures to follow upon hearing the fire alarm. This includes how to safely evacuate to the nearest assembly area within a short timeframe. Staff were also trained to identify and use firefighting facilities such as fire hydrants, fire extinguishers, and other related equipment. Activities during the drill were meticulously documented, and photographs were taken to provide a visual record of the procedures and participation.

Figure - 17: Fire Drill Records

SHW

Bi-Annual Environmental Monitoring Report

6.2 Occupational Hazard Prevention and First Aid Training

Ensuring the safety and well-being of our employees is paramount. STC conducts comprehensive training programs focused on occupational hazard prevention and first aid. These programs are meticulously documented with detailed procedures and photographic evidence to uphold high standards of health and safety compliance.

OHS training at STC encompasses a broad spectrum of critical safety topics. Employees receive training on energy isolation to prevent accidental startups, and on confined space and rescue equipment to ensure safe operations in restricted areas. Office safety training covers best practices for maintaining a safe work environment, while working at height training emphasizes the use of proper safety measures and equipment. Training for riggers and signalmen ensures safe rigging practices and effective communication during lifting operations. Hot work training covers procedures and precautions for tasks involving open flames or heat, and safety inductions provide new employees with essential safety knowledge.

Additional training includes belt conveyor guarding and machine cover to enhance machinery safety, first aid for immediate response to injuries, and scaffolding safety for the proper erection and use of scaffolds. Programs such as "Take 2 Minutes" encourage employees to assess risks before starting tasks, and safety interaction and observation promote proactive safety discussions. Electrical safety training addresses procedures for working with electrical systems, while manual handling training teaches proper techniques to prevent injuries. Risk management training focuses on identifying, assessing, and mitigating workplace risks.

Internally, STC conduct annual employee safety inductions to refresh safety protocols, permit to work training to ensure understanding of the permit system for hazardous tasks, and safe work procedure training. Risk assessment training is provided to develop techniques for evaluating and mitigating risks. Lototo (Lock Out, Tag Out, Try Out) training ensures the safe de-energization of equipment, and specific electrical training addresses managing electrical hazards. Regular office safety training and fire drills are also conducted to reinforce these practices.

A key component of STC's training is first aid. First aid training program equips employees with the skills necessary to provide immediate assistance in the event of an injury or health emergency. This includes basic first aid techniques, CPR, and the use of first aid equipment. Employees learn how to respond to a variety of medical situations, ensuring that they are prepared to act swiftly and effectively. This training is crucial in minimizing the impact of workplace injuries and can be life-saving in critical situations. Moreover, to safeguard occupational health, STC collaborates with the Social Security Board to conduct health check-ups using a mobile medical unit and arranges necessary medical care for employees as needed.

SHWE TAUNG CEMENT CO.LTD.

Bi-Annual Environmental Monitoring Report

Figure –18: OHS, First Aid Trainings Records and Medical check-ups from Social Security Board using Mobile Medical Unit

Bi-Annual Environmental Monitoring Report

7. Conclusion and Recommendation

STC cement plant demonstrates the implementation of Environment Monitoring Plan in which they are operating and has properly assessed the key potential environmental and social impacts associated with the cement plant operation. It is ensuring that the Myanmar environmental legislative compliance and IFC standards of good practice during the cement plant expansion project and operations in Thazi Township, Mandalay Region.

Mitigation measures are properly implemented as per stated in EMP, it is expected that the environmental and social impacts are managed by STC with robust environmental management system that is implemented by a well-resourced, integrated and competent HSE staffs as per compliance of STC Cement Plant EIA report.

The Environment Management Plan concludes that no major direct impacts are anticipated from this Project and all environmental impacts have been properly and progressively mitigated. These monitoring results will be properly communicated to stakeholders, especially local community, as per Stakeholders Engagement Plan. Moreover, biannual environmental monitoring reports are disclosed to community at Information Centers in Pyi Nyaung and Ku Pyin villages and has uploaded in Apache Cement Website https://www.apachecement.com/. The "Status of Cement Plant Biannual Environmental Monitoring Reports Submission to ECD" can be seen in the Appendix-A.

SHWE TAUNG Building Materials

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

8. Appendix

APPENDIX-A

Figure: Water Suppression Map to mitigate dust emission in plant site

Table: Water Suppression Record from May to October 2024 to mitigate dust suppression in plant site.

Water Suppression Record 2024										
	(Ca	-4174 pacity: 00 gal)	(Ca _l	-1052 pacity: 0 gal)	(C	C-1051 apacity: 000 gal)	(Ca	P-4508 apacity: 00 gal)	(C:	R-5193 apacity: 00 gal)
Month	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consump tion	Total Load	Water Consump tion
May 2024	-	-	72	288000	-	-	34	153000	-	-
June 2024	-	-	21	84000	-	-	18	81000	78	62400
July 2024	-	-	27	108000	-	-	83	373500	141	112800
August 2024	-	-	19	76000	-	-	61	274500	159	127200
September 2024	-	-	-	-	-	-	81	364500	212	169600
October 2024	1	1	1	-			96	432000	220	17600

Note: Source of water supply from Sedimentation Ponds

Bi-Annual Environmental Monitoring Report

Table: Electrostatic Precipitator Maintenance Record

No	Month	Location	Qty	Unit
1	May	Line-1, Coal Mill Bag Filter & Cage	1536	Nos
2	June	Cement Mill-2, Bag Filter & Cage	1792	Nos
3	October	Cement Mill-1, Bag Filter & Cage	256	Nos

Table: Status of Cement Biannual Environmental Monitoring Reports Submission to ECD

ဝန်ကြီးရုံး အတည်ပြုချက် ရရှိသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှမှု အစီရင်ခံစာ တင်ပြသည့် ရက်စွဲ	(၆) လပတ် စောင့်ကြပ်ကြည့်ရှမှု အစီရင်ခံစာ တင်ပြသည့် အကြိမ်အရေအတွက်	စောင့်ကြပ်ကြည့်ရှုမှုအစီရင်ခံစာ တင်ပြသည့် အချိန်ကာလ အပိုင်းအခြား	မှတ်ချက်
		ပထမအကြိမ်	၂၀၂၀ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၀ ခုနှစ် ဇွန်လအထိ	
		ဒုတိယအကြိမ်	၂၀၂၀ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၀ ခုနှစ် ဒီဇင်ဘာလအထိ	
		တတိယအကြိမ်	၂၀၂၁ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၁ ခုနှစ် ဇွန်လအထိ	
	10 1 10 10	စတုတ္ထအကြိမ်	၂၀၂၁ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၁ ခုနှစ် ဒီဇင်ဘာလအထိ	
	Jહ∙J·J⇔J¢	ပဉ္စမအကြိမ်	၂၀၂၂ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၂ ခုနှစ် ဇွန်လအထိ	
၂၂.၁၁.၂၀၁၉		ဆဌမအကြိမ်	၂၀၂၂ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၂ ခုနှစ် ဒီဇင်ဘာလအထိ	
		သတ္တမအကြိမ်	၂၀၂၃ ခုနှစ် ဇန်နဝါရီလ မှ ၂၀၂၃ ခုနှစ် ဇွန်လအထိ	
		အဌမအကြိမ်	၂၀၂၃ ခုနှစ် ဇူလိုင်လ မှ ၂၀၂၃ ခုနှစ် ဒီဇင်ဘာလအထိ	
	၂၈.၆.၂၀၂၄	နဝမအကြိမ်	၂၀၂၃ ခုနှစ် နိုဝင်ဘာလမှ ၂၀၂၄ ခုနှစ် ဧပြီလအထိ	မန္တလေးတိုင်းရုံး၏ ညွှန်ကြားချက်အရ အစီရင်ခံစာ တင်ပြသည့် ကာလအပိုင်း အခြားအား ဝန်ကြီးရုံးအတည်ပြုသည့် ရက်စွဲအရ ပြန်လည်ညှိနှိုင်းပြင်ဆင် တင်ပြခဲ့ပါသည်။
	၂၀၂၄ ခုနှစ် နိုဝင်ဘာလ	ဒဿမအကြိမ်	၂၀၂၄ ခုနှစ် မေလမှ ၂၀၂၄ ခုနှစ် အောက်တိုဘာလအထိ	

Bi-Annual Environmental Monitoring Report

APPENDIX-B

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-1) (Ku Pyin Stream Water Quality Results)

Water Quality Test Report

Nature of water

Stream Water

Location

Ku Pyin Village

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
DH	7.9	. 6.5 ~ 8.5
Colour(True)	0 PCU	15 PCU
Turbidity	0.71 NTU	5 NTU
Calcium Hardness	270 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	4 mg/l	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	3 mg/l	50mg/l
Nitrate	4 mg/l	50mg/l

Tested by

O

Han Ko Win Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By

Team Leader

Lab & QC Department

Water Quality Test Report

Nature of water

Stream Water

Location

Ku Pyin Village

Date of sample collection

18.07.2024

Date of sample examination

19.07.2024

Date of completing

25.07.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.3	6.5 ~ 8.5
Colour(True)	65 PCU	15 PCU
Turbidity	21.6 NTU	5 NTU
Calcium Hardness	225 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	6 mg/l	250mg/l
Sulphate(as SO ₄)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	67 mg/l	50mg/l

Tested by

59

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Water Quality Test Report

Nature of water

Stream Water

Location

Ku Pyin Village

Date of sample collection

20.08.2024

Date of sample examination

20.08.2024

Date of completing

22.08.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.5	6.5 ~ 8.5
Colour(True)	35 PCU	15 PCU
Turbidity	15.3 NTU	5 NTU
Calcium Hardness	180 mg/l	500 mg/l as CaCOз
Chloride(as Cl)	2 mg/l	250mg/l
Nitrate	7 mg/l	50mg/l
Sulphate(as SO ₄)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	41 mg/l	50mg/l
E-Coli	2700(CFU/100)ml	0(CFU/100)ml
Coliform	19488(CFU/100)ml	0(CFU/100)ml

Tested by

30

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye' Naing See

Lab & QC Department

Water Quality Test Report

Nature of water

Stream Water

Location

Ku Pyin Village

Date of sample collection

20.09.2024

Date of sample examination

21.09.2024

Date of completing

25.09.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.5	6.5 ~ 8.5
Colour(True)	15 PCU	15 PCU
Turbidity	3.89 NTU	5 NTU
Calcium Hardness	246 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	2 mg/l	250mg/l
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	13 mg/l	50mg/l
Nitrate	5.9 mg/l	50mg/l

Tested by

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By Fox

Ye' Naing Soe

Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Water Quality Test Report

Nature of water

Stream Water

Location

Ku Pyin Village

Date of sample collection

23.10.2024

Date of sample examination

23.10.2024

Date of completing

25.10.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.6	6.5 ~ 8.5
Colour(True)	10 PCU	15 PCU
Turbidity	0.44 NTU	5 NTU
Calcium Hardness	200 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	1 mg/l	250mg/l
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	3 mg/l	50mg/I
Nitrate	16 mg/l	50mg/l

Tested by

J.

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye' Naing Soe

Lab & QC Department

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-2) (Ye Shin Stream Water Results)

Water Quality Test Report

Nature of water

Stream Water

Location

Near Pyin Nyaung Village

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
РН	7.8	6.5 ~ 8.5
Colour(True)	20 PCU	15 PCU
Turbidity	1.11 NTU	5 NTU
Calcium Hardness	207 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	4 mg/l	250mg/l
Sulphate(as SO ₄)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	10 mg/l	50mg/l
Nitrate	9.1 mg/i	50mg/l

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By

e` Naing So

Lab & QC Department

Water Quality Test Report

Nature of water

Stream Water

Location

Near Pyin Nyaung Village

Date of sample collection

18.07.2024

Date of sample examination

19.07.2024

Date of completing

25.07.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	7.9	6.5 ~ 8.5
Colour(True)	25 PCU	15 PCU
Turbidity	1.36 NTU	5 NTU
Calcium Hardness	195 mg/l	500 mg/l as CaCO3
Chloride(as CI)	6 mg/l	250mg/l
Sulphate(as SO4) .	20 mg/l	200mg/l
Total Suspended Solid(TSS)	8 mg/l	50mg/l

Tested by,

00

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Lab & QC Department

Lab & Quality Control Department

Water Quality Test Report

Nature of water

Stream Water

Location

Near Pyin Nyaung Village

Date of sample collection

21.08.2024

Date of sample examination

21.08.2024

Date of completing

23.08.2024

7 Line 1	70 V V V	
Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.2	6.5 ~ 8.5
Colour(True)	5 PCU	15 PCU
Turbidity	4.36 NTU	5 NTU
Calcium Hardness	150 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	5 mg/l	250mg/l
Nitrate	5.2mg/l	50mg/l
Sulphate(as SO ₄)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	17 mg/l	50mg/l
E-Coli	129 (CFU/100)ml	0(CFU/100)ml
Coliform	2394 (CFU/100)ml	0(CFU/100)ml

Tested by,

M.

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Water Quality Test Report

Nature of water

Stream Water

Location

Near Pyin Nyaung Village

Date of sample collection

23.10.2024

Date of sample examination

23.10.2024

Date of completing

25.10.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.3	6.5 ~ 8.5
Colour(True)	10 PCU	15 PCU
Turbidity	7.21 NTU	5 NTU
Calcium Hardness .	168 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	2 mg/l	250mg/l
Sulphate(as SO ₄)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	22 mg/l	50mg/l
Nitrate	8.4 mg/l	50mg/l

Tested by,

M

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing Soe Team Leader (

Lab & QC Department

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-3) (Supply Water (Lower Reservoir))

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

15.05.2024

Date of sample examination

16.05.2024

Date of completing

22.05.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.3	6.5 ~ 8.5
Colour(True)	60 PCU	15 PCU
Turbidity	9.83 NTU	5 NTU
Calcium Hardness	90 mg/l	500 mg/l as CaCO3
Chloride(as Cl)	5 mg/l	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	40 mg/l	50mg/l
Nitrate	4.8 mg/l	50mg/l

Tested by,

O x

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing ≸oe

Team Leader

Lab & QC Department

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

19.06.2024

Date of sample examination

20.06.2024

Date of completing

22.06.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.6	6.5 ~ 8.5
Colour(True)	100 PCU	15 PCU
Turbidity	10.2 NTU	5 NTU
Calcium Hardness	135 mg/l	500 mg/l as CaCO3
Chloride(as CI)	5 mg/l	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Total Suspended Solid(TSS)	37 mg/l	50mg/l
Nitrate	26 mg/l	50mg/I

Tested by,

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By

e` Naing Spe

Team Leader
Lab & QC Department

Lab & Quality Control Department

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

10.07.2024

Date of sample examination

11.07.2024

Date of completing

17.07.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	
PH	8.5	6.5 ~ 8.5	
Colour(True)	40 PCU	15 PCU	
Turbidity	7.74 NTU	5 NTU	
Calcium Hardness	120 mg/l	500 mg/l as CaCO3	
Chloride(as Cl)	5 mg/l	250mg/l	
Sulphate(as SO ₄)	20 mg/l	200mg/l	
Total Suspended Solid(TSS)	37 mg/l	50mg/l	

Tested by,

Han Ko Win

Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By

Ye` Naing Soe Team Leader

Lab & QC Department

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

12.08.2024

Date of sample examination

12.08.2024

Date of completing

13.08.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
P ^H	8.8	6.5 ~ 8.5
Colour(True)	15 PCU	15 PCU
Turbidity	7.93 NTU	5 NTU
Calcium Hardness	129 mg/l	500 mg/l as CaCO3
Chloride(as CI)	3 mg/l	250mg/l
Sulphate(as SO4)	20 mg/l	200mg/l
Nitrate	7.6 mg/l	50mg/I
Total Suspended Solid(TSS)	34 mg/l	50mg/I

Tested by,

()T

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By

Pe' Naing Sole

Lab & QC Department

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

17.09.2024

Date of sample examination

17.09.2024

Date of completing

21.09.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline	
P ^H	8.4	6.5 ~ 8.5	
Colour(True)	20 PCU	15 PCU	
Turbidity .	16.9 NTU	5 NTU	
Calcium Hardness	99 mg/l	500 mg/l as CaCO3	
Chloride(as Cl)	3 mg/l	250mg/l	
Sulphate(as SO ₄)	10 mg/l	200mg/l	
Total Suspended Solid(TSS)	41 mg/l	50mg/l	
Nitrate	6 mg/l	50mg/l	

Tested by,

Z E

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By, Fox

Ye` Naing Soe Team Leader

Lab & QC Department

Water Quality Test Report

Nature of water

Lower Reservoir/Non Potable Water

Location

Infront of Pump Station.

Date of sample collection

18.10.2024

Date of sample examination

19.10.2024

Date of completing

23.10.2024

Description of Analysis	Analysis Results	WHO Drinking water Guideline
PH	8.5	6.5 ~ 8.5
Colour(True)	25 PCU	15 PCU
Turbidity	5.49 NTU	5 NTU
Calcium Hardness .	126 mg/l	500 mg/l as CaCO3
Chloride(as CI)	3 mg/l	250mg/l
Sulphate(as SO4)	10 mg/l	200mg/l
Total Suspended Solid(TSS)	22 mg/l	50mg/l
Nitrate	7 mg/l	50mg/l

Tested by,

()

Han Ko Win Chemist

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Naing Soe

Lab & QC Department

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-4)
(Supply Water (Lower Reservoir))
Tested by External Laboratories

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar, Phone No Fax No: (+95) 1 2309051

Doc No: GEM-LB-R004E/01 Page1of2

Report No. : GEM-LAB-202408095

Revision No. : 1

Report Date 22 August, 2024

Application No.: 0235-C001

Test Report

Client Name

Shwe Taung Cement Co.,Ltd

Address

No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

Shwe Taung Cement Water Quality Test

Sample Description

Sample Name : Supply Water

Sampling Date 🛊 7 August, 2024

Sample No. : W-2408079

Sampling By: Withdraw GEM

Waste Profile No.: -

Sample Received Date : 7 August, 2024

Analytical Date : 7-22/08/2024

No.	Parameter	Method	Unit	Result	LOQ
1	Temperature	Instrument Analysis Method	°C	26.8	0.0
2	рН	APHA 4500 H+ B (Electrometric Method)	=,	8.31	0.00
3	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	12	-
4	BOD (5)	HACH Method 10099 (Respirometric Method)	mg/l	10.35	0.00
5	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	30.7	0.7
6	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
8	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	<0.02	0.02
9	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
10	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
13	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
14	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
15	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
16	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
17	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
18	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
19	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.274	0.002
20	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.002
21	Total Cyanide	Distillation Process: APHA 4500-CN- C. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.002
22	Hexavalent Chromium (Cr6+)	ISO 11083: 1994 (Determination of chromium(VI) Spectrometric method using 1-5-diphenylcarbazide)	mg/l	<0.05	0.05

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Doc No: GEM-LB-R004E/01 Page2of2

Report No. : GEM-LAB-202408095

Revision No.: 1

Report Date : 22 August, 2024

Application No.: 0235-C001

Test Report

Client Name

: Shwe Taung Cement Co.,Ltd

Address

No.108, Corner of Min Ye Kyaw Swar Road & Hnin Si Gone Street, Saw Yan Paing (East) Ward, Alone

Project Name

: Shwe Taung Cement Water Quality Test

Sample Description

Sample Name 😲 Supply Water

Sampling Date : 7 August, 2024

Sample No.

W-2408079

Sampling By : Withdraw GEM

Waste Profile No.: -

Sample Received Date : 7 August, 2024

Analytical Date: 7-22/08/2024

No.	Parameter Method		Unit	Result	LOQ
23	Fluoride	USEPA SPANDS 2 Method	mg/l	0.227	0.014
24	Total Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.1	0.1
25	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.019	0.005
26	PhenoIs	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	0.006	0.002
27	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	mg/l	54000.0	1.8

Remark: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 22nd edition

Analysed By:

Cherry Myint Thein

Assistant Manager

*** End Of Document ***

Approved By:

Ni Ni Aye Lwin Aug 22, 2024

Manager

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012

W0824 167 Issue No - 1.0/Page 1 of 2

aboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement
Nature of Water	ဆည်ရေ
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။
Date and Time of collection	6.8.2024 (10:30 AM)
Date and Time of arrival at Laboratory	7.8.2024
Date and Time of commencing examination	8.8.2024
Date and Time of completing	9.8.2024

Results of Water Analysis

WHO Drinking Water Guideline (Geneva - 1993)

рН			6.5 - 8.5
Colour (True)		TCU	15 TCU
Turbidity		NTU	5 NTU
Conductivity		micro S/cm	
Total Hardness		mg/l as CaCO ₃	500 mg/l as CaCO ₃
Calcium Hardness		mg/l as CaCO ₃	
Magnesium Hardness		mg/l as CaCO ₃	
Total Alkalinity		mg/l as CaCO ₃	
Phenolphthalein Alkalinity		mg/l as CaCO ₃	
Carbonate (CaCO ₃)		mg/l as CaCO ₃	
Bicarbonate (HCO ₃)		mg/l as CaCO ₃	
Iron	0.88	mg/l	0.3 mg/l
Chloride (as CL)		mg/l	250 mg/l
Sodium Chloride (as NaCL)		mg/l	
Sulphate (as SO ₄)		mg/l	500 mg/l
Total Solids		mg/l	1500 mg/l
Total Suspended Solids		mg/l	
Total Dissolved Solids		mg/l	1000 mg/l
Manganese		mg/l	0.05 mg/l
Phosphate		mg/l	
Phenolphthalein Acidity		mg/l	
Methyl Orange Acidity		mg/l	
Salinity		ppt	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

Zaw Hein Oo B.Sc (Chemistry)

Approved by

Signature:

Name:

Thinzar Theint Theint

B.F. (Civil)

Assistant Technical Officer
ISO Tech Laboratory

(a division of WEG Co., Ltd.) SO Tach Laboratory

WTL-RE-001

Issue Date - 01-12-2012 Effective Date - 01-12-2012

Issue No - 1.0/Page 2 of 2

Laboratory Technical Consultant: U Saw Christopher Maung B.Sc Engg: (Civil), Dip S.E(Delft) Lecturer of YIT (Retd). Consultant (Y.C.D.C), LWSE 001. Former Member (UNICEF, Water quality monitoring & Surveillance Myanmar)

W0824 167

WATER QUALITY TEST RESULTS FORM

Client	Shwe Taung Cement
Nature of Water	ဆည်ရေ
Location	ပြည်ညောင်ကျေးရွာ၊ သာစည်မြို့နယ်။
Date and Time of collection	6.8.2024 (10:30 AM)
Date and Time of arrival at Laboratory	7.8.2024
Date and Time of commencing examination	8.8.2024
Date and Time of completing	9.8.2024

Results of Water Analysis

WHO Drinking Water Guideline (Geneva - 1993)

Temperature (°C)		°C	
Fluoride (F)	0.4	mg/l	1.5 mg/l
Lead (as Pb)		mg/l	0.01 mg/l
Arsenic (As)	0.005	mg/l	0.01 mg/l
Nitrate (N.NO ₃)		mg/l	50 mg/l
Chlorine (Residual)	Nil	mg/l	
Ammonia Nitrogen (NH ₃)	0.15	mg/l	
Ammonium Nitrogen (NH ₄)		mg/l	
Dissolved Oxygen (DO)		mg/l	
Chemical Oxygen Demand (COD)		mg/l	
Biochemical Oxygen Demand (BOD) (5 days at 20 °C)		mg/l	
Cyanide (CN)	0.011	mg/l	0.07 mg/l
Zinc (Zn)		mg/l	3 mg/l
Copper (Cu)	Nil	mg/l	2 mg/l
Silica (SiO ₂)		mg/l	

Remark: This certificate is issued only for the receipt of the test sample.

Tested by

Signature:

Name:

Sr.Chemist

Approved by

Signature:

Name:

Thinzar Theint Theint B.E (Civil) Assistant Technical Officer

ISO Tech Laboratory

Bi-Annual Environmental Monitoring Report

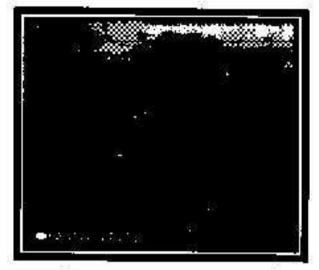
APPENDIX - (B-5) (Sedimentation Pond 5 Water Results)

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Surface Water


Location

Beside 103 & 501 Area

Date of sample collection Date of sample examination 13.05.2024 14.05.2024

Date of completing

20.05.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	7.7	6-9	
Chemical Oxygen Demand(COD)	68 mg/L 0-125mg/L		300
Biologycal Oxygen Demand(BOD)	43 mg/L	0-30mg/L	2 241124 - 23
Total Suspended Solid(TSS)	130 mg/L	Max 50mg/L	
Total Nitrogen	Non Determination	10mg/L	Can't Test
Total Nitrate	Non Determination	44.29mg/L	Can't Test
Total Phosphorous	0.2 mg/L	2mg/L	
Oil & Grease	Non Determination	10 mg/L	Can't Test

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department

Lab & Quality Control Department

Waste Water Test Report

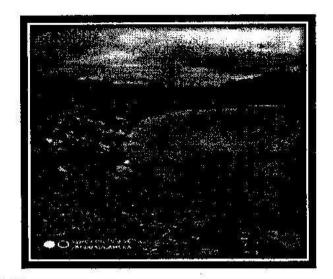
Nature of water

Surface Water

Location

Beside 103 & 501 Area

Date of sample collection


14.06.2024

Date of sample examination

14.06.2024

Date of completing

22.06.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
pH	8	6-9	
Chemical Oxygen Demand(COD)	96 mg/L 0-125mg/L		584504864
Biologycal Oxygen Demand(BOD)	13 mg/L 0-30mg/L		
Total Suspended Solid(TSS)	99 mg/L Max 50mg/L		
Total Nitrogen	1.65mg/L	10mg/L	-
Total Nitrate	7.3 mg/L	44.29mg/L	NS
Total Phosphorous	0.2 mg/L	2mg/L	
Oil & Grease	Non Determination	10 mg/L	Can't Test

Tested by,

Han Ko Win

Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Term Leaden

Team Leader

Lab & QC Department

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Surface Water

Location

Beside 103 & 501 Area

Date of sample collection


15.07.2024

Date of sample examination

16.07.2024

Date of completing

24.07.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	Remark
рН	8.3		- KEIIIAIK
Chemical Oxygen Demand(COD)		6-9	20 20 10
Biologycal Oxygen Demand(BOD)	93 mg/L	0-125mg/L	
Siciogycai Oxygen Demand(BOD)	26 mg/L	0-30mg/L	
Total Suspended Solid(TSS) .	87 mg/L	Max 50mg/L	
Total Phosphorous	0.2 mg/L		
Oil & Grease		2mg/L	
050000000000000000000000000000000000000	Non Determination	10 mg/L	Can't Test

Tested by,

Han Ko Win Chemist

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

Team Leader

Lab & QC Department

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Surface Water

Location

Beside 103 & 501 Area

Date of sample collection

07.08.2024

Date of sample examination

08.08.2024

Date of completing

10.08.2024

-44° (**)** 		gyra (Ag
kan estambaria	and the second	
		10 00 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		20
 T. MILLER		

Description of Analysis	Analysis Results	IFC Waste Water Guideline
pH	8.1	6-9
Chemical Oxygen Demand(COD)	60 mg/L	0-125mg/L
Total Suspended Solid(TSS)	48 mg/L	Max 50mg/L
Total Phosphorous	0.3 mg/L	2mg/L
Total Nitrogen	2.05 mg/L	10mg/L
Total Nitrate	9.1 mg/L	44.29mg/L

Tested by,

(9°

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe Team Leader

Lab & QC Department
Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Location

Surface Water Beside 103 & 501 Area

16.09.2024

Date of sample collection Date of sample examination

16.09.2024

Date of completing

20.09.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline	
рН	8.1	6-9	
Chemical Oxygen Demand(COD)	55 mg/L	0-125mg/L	
Total Suspended Solid(TSS)	28 mg/L	Max 50mg/L	
Total Phosphorous	0.3 mg/L	2 mg/L	
Total Nitrogen	2- 7 5mg/L	10mg/L	
Total Nitrate	12.2 mg/L	44.29mg/L	

Tested by,

Han Ko Win Chemist **Lab & QC Department Shwe Taung Cement Co., Ltd.** Approved By,

Ye' Naing Soe **Team Leader**

Lab & QC Department Shwe Taung Cement Co., Ltd.

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

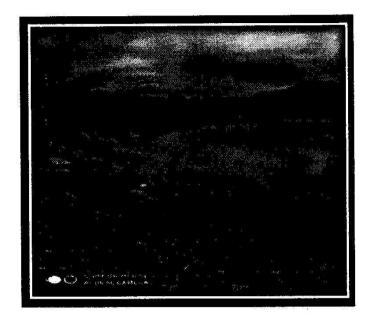
Nature of water

Location

Date of sample collection

Date of sample examination

Date of completing


Surface Water

Beside 103 & 501 Area

24.10.2024

25.10.2024

26.10.2024

Description of Analysis	Analysis Results	, IFC Waste Water Guideline
Н	8.2	6-9
Chemical Oxygen Demand(COD)	12 mg/L	0-125mg/L
Total Suspended Solid(TSS)	18 mg/L	Max 50mg/L
Total Phosphorous	0.1 mg/L	2 mg/L
Total Nitrogen	1.78 mg/L	10mg/L
Total Nitrate	7.9 mg/L	44.29mg/L

Tested by,

PC

Han Ko Win
Chemist
Lab & QC Department
Shwe Taung Cement Co., Ltd.

Approved By,

Team Leader

Lab & QC Department

Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (B-6) (Sedimentation Pond 9 Water Results)

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Surface Water(Effluent Water)

Location

55 Acre (Bio Tank)

Date of sample collection

19.09.2024

Date of sample examination

20.09.2024

Date of completing

24.09.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
pH .	8.2	6-9
Chemical Oxygen Demand(COD)	38 mg/L	0-125mg/L
Total Suspended Solid(TSS)	33 mg/L	Max 50mg/L
Total Nitrogen	2.42 mg/L	10mg/L
Total Nitrate	10.7 mg/L	44.29mg/L
Total Phosphorous	2.6 mg/L	2mg/L

Tested by,

 \mathcal{N}

Han Ko Win Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By, To.

Som

Ye' Naing Soe Team Leader

Lab & QC Department

Shwe Taung Cement Co., Ltd.

Shwe Taung Cement Co., Ltd.

Lab & Quality Control Department

Waste Water Test Report

Nature of water

Surface Water(Effluent Water)

Location

55 Acre (Bio Tank)

Date of sample collection

24.10.2024

Date of sample examination

25.10.2024

Date of completing

26.10.2024

Description of Analysis	Analysis Results	IFC Waste Water Guideline
рН	8.2	6-9
Chemical Oxygen Demand(COD)	33 mg/L	0-125mg/L
Total Suspended Solid(TSS)	19 mg/L	Max 50mg/L
Total Nitrogen	4.49 mg/L	10mg/L
Total Nitrate	19.9 mg/L	44.29mg/L
Total Phosphorous	2.3 mg/L	2mg/L

Tested by,

 \bigcirc .

Han Ko Win Chemist Lab & QC Department

Shwe Taung Cement Co., Ltd.

Approved By,

Ye' Naing Soe

h e oo Damanton

Lab & QC Department
Shwe Taung Cement Co., Ltd.

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX- C Ambient Air Quality Results

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-1) Ambient Air Quality Results of Plant Site

Record Cnt 1440

07-05-2024

Start Date 10:39:00 AM

End Date 08-05-2024

10:38:00 AM

	10:38	3:00 AM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	28.6951	7.07361	0	.185847	43.6729	31.3437	7.97638	0	54.1347	27.4	206.736	1.29131	10.1875	0	0	0	0	
Max	83	65	0	.42	113	66	46	0	100	34	359	6.3	10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	26	21	0	0	9.7	0	0	0	0	
EPAS	28,6951	7.07361	0	.185847	43.6729	31.3437	7.97638	0	54.1347	27.4	206.736	1.29131	10.1875	0	0	0	0	I
919217	83	65		.42	113	66	46	0	100	34	359	6.3	10.5	0	0	0	0	4
	2	1	0	0	2	1	0	0	26	21	0	0	9.7	0	0	0	0	ı
Daily	28.5655	10.5867	0	.186754	28.5593	27.4382	13,7091	0	39.5093	29.9787	208.375	2.07103	10,2340	0	0	0	0	Ī
Fri, Jul 5, 2024	83	65	0	.42	111	66	46	0	69	34	359	6.3	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	26	24	1	0	9.9	0	0	0	0	1
Ave Period 24	28,5655	10.5867	0	.186754	28.5593	27.4382	13,7091	0	39.5093	29.9787	208.375	2.07103	10.2340	0	0	0	0	Ĩ
05-07-2024 11:59	83	65	0	.42	111	66	46	0	69	34	359	6.3	10.5	0	0	0	0	4
	2	1	0	0	2	1	0	0	26	24	1	0	9.9	0	0	0	0	ı
Daily	28.8575	2.66979	0	.184710	62.6181	36.2394	.790297	0	72.4679	24.1674	204.682	.313928	10.1292	0	0	0	0	i
Mon, Aug 5, 2024	56	11	0	.38	113	60	11	0	100	32	357	4.7	10.3	0	0	0	0	1
, 3 ,	2	1	0	0	2	1	0	0	31	21	0	0	9.7	0	0	0	0	ı
Ave Period 24	28.8575	2.66979	0	.184710	62.6181	36.2394	.790297	0	72.4679	24.1674	204.682	.313928	10.1292	0	0	i o	0	i
05-08-2024 10:38	56	11	0	.38	113	60	11	0	100	32	357	4.7	10.3	0	0	0	0	1
	2	1	0	0	2	1	0	0	31	21	0	0	9.7	0	0	0	0	

Report Main Preferences Header Data

Record Cnt 1440

19-06-2024

Start Date 3:05:00 PM

End Date 20-06-2024

3.U4.U4 DM

	3:04:0)1 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	13.8638	6.56388	.006944	.077576	18.2666	12.1326	3.72013	0	79.825	26.925	155.627	.692847	10.3130	0	0	0	0	
Max	104	105	3	.52	60	33	38	0	100	33	335	7.5	10.6	0	0	0	0	
Min	2	1	0	0	2	1	0	0	47	24	5	0	9.7	0	0	0	0	
	13.8638	6.56388	.006944	.077576	18.2666	12.1326	3.72013	0	79.825	26.925	155.627	.692847	10.3130	0	0	0	0	
	104	105	3	.52	60	33	38	0	100	33	335	7.5	10.6	0	0	0	0	l
l I	2	1	0	0	2	1	0	0	47	24	5	0	9.7	0	0	0	0	
- 1	25 0635 I	14 4579	l 0 l	090728	12 3289	10 1757	9 13457	1 0	77	27 2635	155 743	860747	10.4078	1 0	l 0	I o	I n	ı
2024			0												-		0	l
1, 2024	2	1	0	0	2	1	0	0	50	24	72	0	9.9	0	0	0	0	l
24	25 0635	14 4579	0	000728	12 3289	10 1757	9 13457	0	77	27 2635	155.743	860747	10 4078	0	0	0	0	
:59			0															ı
		1	0			1	0	_			72				_			ı
		1 80723	011049	-	_	13 2805	510337				155 550	_						ŀ
2024			3												-		· ·	l
2024		1	0			1									•		_	ı
-														U	•			ļ
24				.069801										0	0	0	0	l
	41	15	_	.31	60	33	12	0	100	32			10.5	0	0	0	0	
	2	4	()	0		4	0	0	47	0.4	_	_ ^	0.7	_ ^			_ ^	
N 1	Max Min , 2024 24 59	PMA ug/m3 13.8638 104 Min 2 13.8638 104 2 25.0635 104 2 25.0635 104 2 7.24309 2024 7.24309	ug/m3 Ave 13.8638 6.56388 Max 104 105 Min 2 1 13.8638 6.56388 104 105 2 1 25.0635 14.4579 104 2 1 25.0635 104 2 1 7.24309 1.89723 41 15 2 1 4 7.24309 1.89723 41 15	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA ug/m3	PMA Ug/m3	PMA ug/m3	PMA ug/m3

Preferences Report Main Header Data

Record Cnt 1440

04-07-2024

Start Date 4:29:00 PM

End Date 05-07-2024

Liiu Dat		00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	Prp M mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	14.4958	5.18263	20.7930	.072729	23.1347	13.4055	1.19444	.000347	83.7319	26.1659	153.636	.652569	10.1354	0	0	0	0	
Max Min	79 2	59 1	83 0	.37 0	62 2	33 1	16 0	.13 0	100 46	32 23	359 5	7.6 0	10.5 9.6	0	<mark>0</mark> 0	0	0	
EPAS	14.4958	5.18263	20.7930	.072729	23.1347	13.4055	1.19444	.000347	83.7319	26.1659	153.636	.652569	10.1354	0	0	0	0	Ī
919217	79	59	83	.37	62	33	16	.13	100	32	359	7.6	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	46	23	5	0	9.6	0	0	0	0	ı
Daily	26.2727 79	10.9157	17.1596 69	.100776	26.1130	16.3569 33	2.88248 16	.001108 .13	89.8957 100	25.1596	190.337 325	1.38603	10.2203	0	0	0	0	1
Sun, Apr 7, 2024	2	59 1	0	.37 0	62 2	1	0	0	57	30 23	27	7.6 0	10.5 9.7	0	0	0	0	
Ave Period 24	26.2727	10.9157	17.1596	.100776	26.1130	16.3569	2.88248	.001108	89.8957	25.1596	190.337	1.38603	10.2203	0	0	0	0	i
07-04-2024 11:59	79	59	69 0	.37	62	33	16	.13	100	30	325	7.6	10.5	0	0	0	0	
D 1	9.12537	2.56825	22.4499	. 059939	2 21.7765	1 12,0596	0 .424671	0 0	57 80.9211	23 26.6248	27 136,900	0 .318099	9.7	0	0	0	0	4
Daily Tue, May 7, 2024	42	14	83	.059939	57	31	15	0	100	32	359	3,6	10.0967 10.3	0	0	0	0	
1 de, May 7, 2024	2	1	0	0	2	1	0	0	46	23	5	0	9.6	0	0	0	0	
Ave Period 24	9.12537	2.56825	22.4499	.059939	21.7765	12.0596	.424671	0	80.9211	26.6248	136.900	.318099	10.0967	0	0	0	0	Ī
07-05-2024 04:28	42	14	83 0	.29	57	31	15	0	100	32	359 5	3.6	10.3	0	0	0	0	
	2	1	U	0	2	1	0	0	46	23	5	0	9.6	0	0	0	0	

Main Report Preferences Header Data

33.6904

141

2

.073472

.22

19.9801

51

5

0

0

0

2.73015

11

0

7.09523

17

Record Cnt 1440

Ave Period 24

14-08-2024 04:47

13-08-2024 **Start Date**

4:48:00 PM

44 00 2024

End Date	C	3-2024 00 PM																	
Ave Max	PMA ug/m3 8.0875 26	3.28402 14	CO2 ppm o	CO ppm .076375	NO2 ppb 40.3673	O3 ppb 22.9826 51	SO2 ppb .118055	PrpM mm .005236	RH % 100 100	TmpC Deg. C 23.5083	WDir Deg. 163.75 256	WSpd mph .008611	Pwr V 10.2427 10.5	0 0	0	0	0		
Min	2	1	0	0	2	5	0	0	100	23	82	0	9.7	0	0	0	0		
EPAS 919217	8.0875 26 2	3.28402 14 1	0 0 0	.076375 .42 0	40.3673 141 2	22.9826 51 5	.118055 14 0	.005236 .19 0	100 100 100	23.5083 25 23	163.75 256 82	.008611 .8 0	10.2427 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0		
Daily Tue, Aug 13, 2024	10.4027 26 2	4.57638 14 1	0 0 0	.083148 .42 0	55.9467 69 44	29.9884 36 23	.393518 14 0	.005231 .19 0	100 100 100	23.4143 24 23	230.344 256 172	.000462 .1 0	10.3402 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0		
Ave Period 24 13-08-2024 11:59	10.4027 26 2	4.57638 14 1	0 0 0	.083148 .42 0	55.9467 69 44	29.9884 36 23	.393518 14 0	.005231 .19 0	100 100 100	23.4143 24 23	230.344 256 172	.000462 .1 0	10.3402 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0	1	
Daily Wed, Aug 14, 2024	7.09523 17 2	2.73015 11 1	0 0 0	.073472 .22 0	33.6904 141 2	19.9801 51 5	0 0 0	.005238 .13 0	100 100 100	23.5486 25 23	135.209 220 82	.012103 .8 0	10.2009 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0		

.005238

.13

0

100

100

100

Environmental Report

23.5486

25

23

135.209

220

82

.012103

.8

0

10.2009

10.5

9.7

0

0

0

0

0

0

0

Record Cnt 1440

24-09-2024

Start Date 8:27:00 AM

End Date 25-09-2024

8:26:00 AM

	0.20.0	JU AIVI																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	12.0486	5.72430	0	.092034	38.2958	24.4354	2.19513	.010708	93.9104	24.4395	180.243	.273680	10.3313	0	0	0	0	
Max	87	53	0	.34	403	140	60	.48	100	30	360	8.6	10.7	0	0	0	0	
Min	2	1	0	0	2	1	0	0	56	23	0	0	9.6	0	0	0	0	
EPAS	12.0486	5.72430	0	.092034	38.2958	24.4354	2.19513	.010708	93.9104	24.4395	180.243	.273680	10.3313	0	0	0	0	ı
919217	87	53	0	.34	403	140	60	.48	100	30	360	8.6	10.7	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	23	0	0	9.6	0	0	0	0	ı
Daily	15.0428	7.64415	0	.091693	35.6259	24.6966	3.38799	.014651	90.6066	25.1339	162.297	.421972	10.4133	0	0	0	0	ı
Tue, Sep 24, 2024	87	53	0	.34	403	140	60	.48	100	30	359	8.6	10.7	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	23	0	0	9.9	0	0	0	0	ı
Ave Period 24	15.0428	7.64415	0	.091693	35.6259	24.6966	3.38799	.014651	90.6066	25.1339	162.297	.421972	10.4133	0	0	0	0	i
24-09-2024 11:59	87	53	0	.34	403	140	60	.48	100	30	359	8.6	10.7	0	0	0	0	ı
	2	1	0	0	2	1	0	0	56	23	0	0	9.9	0	0	0	0	ı
Daily	6.53846	2.19132	0	.092662	43.2090	23.9546	0	.003451	99.9901	23.1617	213.268	.000788	10.1804	0	0	0	0	Ī
Wed, Sep 25,	26	10	0	.17	128	52	0	.14	100	26	360	.1	10.3	0	0	0	0	1
	2	1	0	.05	15	9	0	0	95	23	3	0	9.6	0	0	0	0	ı
Ave Period 24	6.53846	2.19132	0	.092662	43.2090	23.9546	0	.003451	99.9901	23.1617	213.268	.000788	10.1804	0	0	0	0	ĺ
25-09-2024 08:26	26	10	0	.17	128	52	0	.14	100	26	360	.1	10.3	0	0	0	0	I
	2	1	0	.05	15	9	0	0	95	23	3	0	9.6	0	0	0	0	

Record Cnt 1440

07-10-2024

Start Date 2:44:00 PM

End Date 08-10-2024

Ellu Dai		00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	17.2104	7.06180	.072916	.070375	21.75	12.7437	1.66944	0	88.5583	24.7625	230.987	.476527	10.1920	0	0	0	0	
Max	119	72	11	.68	190	84	74	0	100	31	360	6.9	10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	56	22	0	0	9.7	0	0	0	0	
EPAS	17.2104	7.06180	.072916	.070375	21.75	12.7437	1.66944	0	88.5583	24.7625	230.987	.476527	10.1920	0	0	0	0	1
919217	119	72	11	.68	190	84	74	0	100	31	360	6.9	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	22	0	0	9.7	0	0	0	0	I
Daily	18.6618	7.11690	0	.079172	27.3758	15.7913	4.19604	0	90.3561	25.0197	263.334	.454316	10,2458	0	0	0	0	ı
Wed, Jul 10, 2024	72	36	0	.68	190	84	74	0	100	31	360	4.4	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	61	23	0	0	9.9	0	0	0	0	1
Ave Period 24	18.6618	7.11690	0	.079172	27.3758	15.7913	4.19604	0	90.3561	25.0197	263.334	.454316	10.2458	0	0	0	0	Ī
10-07-2024 11:59	72	36	0	.68	190	84	74	0	100	31	360	4.4	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	61	23	0	0	9.9	0	0	0	0	ı
Daily	16.2975	7.02714	.118778	.064841	18.2115	10.8269	.080316	0	87.4276	24.6006	210.642	.490497	10.1581	0	0	0	0	İ
Sat, Aug 10, 2024	119	72	11	.36	45	24	4	0	100	31	358	6.9	10.3	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	22	1	0	9.7	0	0	0	0	ı
Ave Period 24	16.2975	7.02714	.118778	.064841	18.2115	10.8269	.080316	0	87.4276	24.6006	210.642	.490497	10.1581	0	0	0	0	I
10-08-2024 02:43	119	72	11	.36	45	24	4	0	100	31	358	6.9	10.3	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	22	1	0	9.7	0	0	0	0	

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-2) Ambient Air Quality Results of Pyi Nyaung Village

Record Cnt 1440

13-05-2024

Start Date 2:58:00 PM

End Date 14-05-2024

2:57:00 PM

	2:57:0	JU PIVI																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	40.6138	9.58125	0	.242243	45.2638	13.2576	31.4291	0	0	0	172.690	.214236	10.3421	0	0	0	0	
Max	104	73	0	1.5	115	35	89	0	0	0	360	2.8	10.6	0	0	0	0	
Min	2	1	0	0	2	1	0	0	0	0	0	0	9.9	0	0	0	0	
EPAS	40.6138	9,58125	0	.242243	45.2638	13.2576	31.4291	0	0	0	172.690	214236	10.3421	0	0	0	0	ı
919217	104	73	0	1.5	115	35	89	0	0	0	360	2.8	10.6	0	0	0	0	L
	2	1	0	0	2	1	0	0	0	0	0	0	9.9	0	0	0	0	ı
Daily	55,2195	16,4483	0	.297804	33.5571	10.2767	42.1457	0	0	l 0 I	185.241	.087084	10.4640	0	0	I 0	l 0	ı
Mon, May 13,	104	73	0	1.5	106	34	81	0	0	0	356	2.6	10,6	0	0	0	0	1
wen, way 10,	12	1	0	0	2	1	12	0	0	0	1	0	10	0	0	0	0	ı
Ave Period 24	55.2195	16.4483	0	.297804	33.5571	10.2767	42,1457	0	0	0	185.241	.087084	10.4640	0	0	0	0	i
13-05-2024 11:59	104	73	0	1.5	106	34	81	0	0	0	356	2.6	10.6	0	0	0	0	ı
	12	1	0	0	2	1	12	0	0	0	1	0	10	0	0	0	0	ı
Daily	31.7984	5.43652	0	.208708	52.3296	15.0567	24.9610	0	0	0	165.115	.290979	10.2685	0	0	0	0	i
Tue, May 14, 2024	84	73	0	.98	115	35	89	0	0	0	360	2.8	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	0	0	0	0	9.9	0	0	0	0	ı
Ave Period 24	31.7984	5.43652	0	.208708	52.3296	15.0567	24.9610	0	0	0	165.115	.290979	10.2685	0	0	0	0	Ī
14-05-2024 02:57	84	73	0	.98	115	35	89	0	0	0	360	2.8	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	0	0	0	0	9.9	0	0	0	0	1

Record Cnt 1440

13-06-2024

Start Date 11:28:00 AM

	11.20	S:UU AIVI																
End Dat	LU	6-2024 ':00 AM																
Ave	PMA ug/m3 7.8305 5	2,74305	CO2 ppm 0	CO ppm .111361	NO2 ppb 20,6805	O3 ppb 12,8548	SO2 ppb 10,4256	PrpM mm .001930	RH %	TmpC Deg. C 24,9833	WDir Deg. 193,668	WSpd mph .024930	Pwr V	0	0	0	0	
Max	41	20	0	.45	43	23	30	.22	100	27	359	1.6	10.6	0	0	0	0	
Min	2	1	0	0	2	1	0	0	79	24	2	0	9.9	0	0	0	0	
EPAS 919217	7.83055 41 2	2.74305 20 1	0 0 0	.111361 .45 0	20.6805 43 2	12.8548 23 1	10.4256 30 0	.001930 .22 0	98.1868 100 79	24.9833 27 24	193.668 359 2	.024930 1.6 0	10.3345 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Dai l y Thu, Jun 13, 2024	9.73936 41 2	3.68484 20 1	0 0 0	.116861 .45 0	16.7353 43 2	10.9242 23 1	16.0598 30 2	.003031 .22 0	97.6768 100 79	25.4308 27 24	223.779 352 2	.039627 1.6 0	10.4118 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 13-06-2024 11:59	9.73936 41 2	3.68484 20 1	0 0 0	.116861 .45 0	16.7353 43 2	10.9242 23 1	16.0598 30 2	.003031 .22 0	97.6768 100 79	25.4308 27 24	223.779 352 2	.039627 1.6 0	10.4118 10.6 9.9	0 0 0	0 0 0	0 0 0	0 0 0	l
Dai l y Fri, Jun 14, 2024	5.74418 16 2	1.71366 8 1	0 0 0	.105348 .39 0	24.9927 40 2	14.9651 23 1	4.26744 18 0	.000726 .13 0	98.7441 100 79	24.4941 27 24	160.755 359 6	.008866 .8 0	10.25 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0	Ì
Ave Period 24 14-06-2024 11:27	5.74418 16 2	1.71366 8 1	0 0 0	.105348 .39 0	24.9927 40 2	14.9651 23 1	4.26744 18 0	.000726 .13 0	98.7441 100 79	24.4941 27 24	160.755 359 6	.008866 .8 0	10.25 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0	

Record Cnt 1440

15-07-2024

Start Date 4:42:00 PM

End Date 16-07-2024

End Dat		01 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	17.8958	6.37083	32.3569	.106111	32.5611	17.6243	3.57013	0	85.5902	26.4236	183.415	.068541	10.2185	0	0	0	0	
Max	84	57	93	1.36	81	41	56	0	100	33	358	2.8	10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	47	23	0	0	9.7	0	0	0	0	
EPAS	17.8958	6.37083	32.3569	.106111	32.5611	17.6243	3.57013	0	85.5902	26.4236	183.415	.068541	10.2185	0	0	0	0	۱
919217	84	57	93	1.36	81	41	56	0	100	33	358	2.8	10.5	0	0	0	0	۱
	2	1	0	0	2	1	0	0	47	23	0	0	9.7	0	0	0	0	ı
Daily	22.9863	5.64840	25.6643	.139885	55,3105	29.6324	5.02283	0	98.7899	25.1986	215.625	.005022	10,2712	0	l 0	0	0	ı
Mon, Jul 15, 2024	84	18	71	.77	81	41	49	0	100	27	357	.3	10.5	0	0	0	0	ı
111011, 041 10, 202 1	3	1	0	0	16	19	0	0	80	25	0	0	9.9	0	0	0	0	ı
Ave Period 24	22.9863	5.64840	25.6643	.139885	55.3105	29.6324	5.02283	0	98.7899	25,1986	215.625	.005022	10.2712	0	0	0	0	i
15-07-2024 11:59	84	18	71	.77	81	41	49	0	100	27	357	.3	10.5	0	0	0	0	۱
	3	1	0	0	16	19	0	0	80	25	0	0	9.9	0	0	0	0	۱
Daily	15.6706	6.68662	35.2824	.091347	22.6167	12.3752	2.93512	0	79.8203	26.9590	169.336	.096307	10.1955	0	0	0	0	İ
Tue, Jul 16, 2024	84	57	93	1.36	58	30	56	0	100	33	358	2.8	10.3	0	0	0	0	ı
	2	1	0	0	2	1	0	0	47	23	0	0	9.7	0	0	0	0	ı
Ave Period 24	15.6706	6.68662	35.2824	.091347	22.6167	12.3752	2.93512	0	79.8203	26.9590	169.336	.096307	10.1955	0	0	0	0	ĺ
16-07-2024	84	57	93	1.36	58	30	56	0	100	33	358	2.8	10.3	0	0	0	0	1
	2	1	0	0	2	1	0	0	47	23	0	0	9.7	0	0	0	0	1
							_		-	_			_	-	-			-

Main Header Data Report **Preferences**

2

0

Record Cnt 1440

20-08-2024

Start Date 2:55:00 PM

2

21-08-2024 **End Date** 2:54:00 PM **PMA** CO₂ NO2 SO2 PrpM RH % CO О3 TmpC WDir WSpd Pwr V ug/m3 Deg. C Deg. ppb ppb ppb mph ppm ppm mm 19,1069 6.32847 .010416 17,5208 86,2312 26,5187 219,522 Ave .134868 10,6847 4,20208 0 .072013 9.97868 0 0 358 Max 260 78 6 1.61 48 26 56 0 100 31 1.7 0 10.3 Min 2 2 0 0 0 0 56 24 0 0 0 0 0 0 9.1 **EPAS** 19,1069 6,32847 .010416 .134868 17,5208 10,6847 4,20208 0 86,2312 26,5187 219,522 .072013 9.97868 0 260 6 919217 78 0 0 0 1.61 48 56 0 31 358 1.7 10.3 0 26 100 0 0 56 24 0 0 9.1 33.0715 7.91926 .200238 17.7229 11.5889 10.8532 86.8733 26.8972 215.310 .032293 10,1383 0 Daily 0 260 40 1.61 48 26 56 0 100 30 257 .7 10.3 0 0 0 0 Tue, Aug 20, 2024 2 0 0 79 0 61 24 0 9.6 0 0 0 Ave Period 24 33.0715 7.91926 0 17.7229 11.5889 10.8532 0 86.8733 26.8972 215.310 .032293 10.1383 0 0 0 .200238 20-08-2024 11:59 260 40 48 26 56 0 100 30 257 .7 10.3 0 0 0 0 1.61 2 2 0 0 24 79 0 0 0 61 9.6 0 0 10.6033 5,35977 .016759 .095061 17,3977 10.1340 .151955 0 85.8402 26,2882 222,088 .096201 9.88145 0 Daily 44 25 0 31 358 1.7 103 78 .58 100 10.2 0 0 0 0 Wed, Aug 21, 2024 0 2 0 0 24 0 56 0 9.1 0 0 0 0 Ave Period 24 222,088 10.6033 5,35977 .016759 .095061 17,3977 10.1340 .151955 0 85.8402 26,2882 .096201 9.88145 0 0 0 0 21-08-2024 02:54 358 0 103 0 31 1.7 0 0 78 .58 44 25 9 100 10.2 0 0

0

56

0

Environmental Report

0

0

9.1

24

0

0

0

0

Main Report Preferences Header Data

Record Cnt 1440

Start Date 16-09-2024 1:50:00 PM

End Date 17-09-2024

Environment	tal Report
-------------	------------

End Dat		00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	20.5881	7.95486	.600694	.305631	16.0395	12.4736	7.48333	.000701	87.7048	26.1229	150.584	.031180	9.80569	0	0	0	0	
Max Min	317 2	87 1	20 0	2.24 0	46 2	29 1	95 0	.14 0	100 45	33 23	240 7	1.6 0	10 9.1	0	0	0 0	0 0	
EPAS	20.5881	7.95486		•	•	40.4700					450 504			1				1
919217	317	7.95466 87	.600694 20	.305631 2.24	16.0395 46	12.4736 29	7.48333 95	.000701 .14	87.7048 100	26.1229 33	150.584 240	1,6	9.80569 10	0	0	0	0	4
	2	1	0	0	2	1	0	0	45	23	7	0	9.1	0	0	0	0	ı
Daily	31,2950	11.8852	.034426	.360557	13.6032	10.8524	14.2983	0	85,9491	26.8245	143.080	.042131	9.89721	0	0	0	0	1
Mon, Sep 16, 2024	317	53	2	2.24	46	29	95	0	100	33	240	.8	10	0	0	0	0	4
	2	1	0	0	2	1	0	0	45	24	7	0	9.3	0	0	0	0	4
Ave Period 24	31.2950	11.8852	.034426	.360557	13.6032	10.8524	14.2983	0	85.9491	26.8245	143.080	.042131	9.89721	0	0	0	0	Ī
16-09-2024 11:59	317	53	2	2.24	46	29	95	0	100	33	240	.8	10	0	0	0	0	1
	2	1	0	0	2	1	0	0	45	24	7	0	9.3	0	0	0	0	
Daily	12.7192	5.06626	1.01686	.265265	17.8301	13.6650	2.47469	.001216	88.9951	25.6072	156.1	.023132	9.73843	0	0	0	0	
Tue, Sep 17, 2024		87	20	1.3	43	28	51	.14	100	32	229	1.6	10	0	0	0	0	4
	2	1	0	0	2	1	0	0	57	23	57	0	9.1	0	0	0	0	ı
Ave Period 24	12.7192	5.06626	1.01686	.265265	17.8301	13.6650	2.47469	.001216	88.9951	25.6072	156.1	.023132	9.73843	0	0	0	0	1
17-09-2024 01:49	129	87	20	1.3	43	28	51	.14	100	32	229	1.6	10	0	0	0	0	1
	2	1	0	0	2	1	0	0	57	23	57	0	9.1	0	0	0	0	

Report Main Preferences Header Data

Record Cnt 1440

29-10-2024

Start Date 2:04:00 PM

End Date 30-10-2024

	2:03:0	00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	28.7861	9.21319	10.1423	.149784	35.6284	20.9173	12.2	0	82.8770	25.4902	255.794	.058611	10.3369	0	0	0	0	
Max	145	108	66	1.5	85	45	104	0	100	34	356	1.6	10.9	0	0	0	0	
Min	2	1	0	0	2	1	0	0	44	21	1	0	9.7	0	0	0	0	
EPAS	28.7861	9.21319	10.1423	.149784	35.6284	20.9173	12.2	0	82.8770	25.4902	255.794	.058611	10.3369	0	0	0	0	
919217	145	108	66	1.5	85	45	104	0	100	34	356	1.6	10.9	0	0	0	0	ı
	2	1	0	0	2	1	0	0	44	21	1	0	9.7	0	0	0	0	ı
Daily	43.4546	17.0318	.835570	.200721	41.5	24.8187	25.1023	0	84.1258	25.8825	259.954	.061577	10.5129	0	0	0	0	ı
Tue, Oct 29, 2024	132	84	25	1.5	85	45	88	0	100	33	313	1.5	10.9	0	0	0	0	ı
	2	1	0	0	2	1	0	0	47	22	245	0	9.9	0	0	0	0	ı
Ave Period 24	43.4546	17.0318	.835570	.200721	41.5	24.8187	25.1023	0	84.1258	25.8825	259.954	.061577	10.5129	0	0	0	0	ĺ
29-10-2024 11:59	132	84	25	1.5	85	45	88	0	100	33	313	1.5	10.9	0	0	0	0	ı
	2	1	0	0	2	1	0	0	47	22	245	0	9.9	0	0	0	0	ı
Daily	18.4277	3.69194	16.7144	.113815	31.4822	18.1623	3.08886	0	81.9952	25.2132	252.856	.056516	10.2126	0	0	0	0	Ī
Wed, Oct 30, 2024	145	108	66	1.16	67	35	104	0	100	34	356	1.6	10.5	0	0	0	0	1
	2	1	0	0	2	1	0	0	44	21	1	0	9.7	0	0	0	0	ı
Ave Period 24	18.4277	3.69194	16.7144	.113815	31.4822	18.1623	3.08886	0	81.9952	25.2132	252.856	.056516	10.2126	0	0	0	0	
30-10-2024 02:03	145	108	66	1.16	67	35	104	0	100	34	356	1.6	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	44	21	1	0	9.7	0	0	0	0	I

SHWE TAUNG CEMENT COMPANY LIMITED

Bi-Annual Environmental Monitoring Report

APPENDIX - (C-3) Ambient Air Quality Results of Ku Pyin Village

Report Main Preferences Header Data

Record Cnt 1440

15-05-2024 Start Date 4:08:00 PM

End Date 16-05-2024

Eliu Dai		00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	25.6277	10.9784	0	.185854	34.2902	25.5513	28.9777	0	44.7861	31.2645	185.965	.715069	10.22	0	0	0	0	
Max	136	64	0	.56	93	51	93	0	80	38	359	8.6	10.5	0	0	0	0	
Min	2	1	0	0	2	1	0	0	20	25	0	0	9.7	0	0	0	0	
EPAS	25,6277	10.9784	0	.185854	34.2902	25.5513	28.9777	0	44.7861	31.2645	185.965	.715069	10.22	0	0	0	0	١
919217	136	64	0	.56	93	51	93	0	80	38	359	8.6	10.5	0	0	0	0	۱
	2	1	0	0	2	1	0	0	20	25	0	0	9.7	0	0	0	0	ı
Delle	45.1588	20.8813	0	.259343	33.7944	31.6843	46.7627	I 0	40.4385	31.2584	208.207	.962076	10.2947	0	I 0	l 0	l 0	
Daily	136	64	0	.56	92	51	84	0	56	38	359	8.6	10,2947	0	0	0	0	ı
Wed, May 15,	2	1	0	.06	2	1	12	0	20	28	16	0	9.9	0	0	0	0	۱
Ave Period 24	45.1588	20.8813	0	.259343	33.7944	31.6843	46.7627	0	40.4385	31.2584	208.207	.962076	10.2947	0	0	0	0	۱
15-05-2024 11:59	136	64	0	.56	92	51	84	0	56	38	359	8.6	10.5	0	0	0	0	۱
	2	1	U	.06	2	1	12	0	20	28	16	0	9.9	0	0	0	0	ı
Daily	16.1043	6.14979	0	.150020	34.5320	22.5609	20.3057	0	46.9059	31.2675	175.119	.594628	10.1835	0	0	0	0	۱
Thu, May 16, 2024		47	0	.38	93	49	93	0	80	38	345	5.8	10.3	0	0	0	0	۱
	2	1	0	0	2	1	0	0	22	25	0	0	9.7	0	0	0	0	۱
Ave Period 24	16.1043	6.14979	0	.150020	34.5320	22.5609	20.3057	0	46.9059	31.2675	175.119	.594628	10.1835	0	0	0	0	ı
16-05-2024 04:07	71	47	0	.38	93	49	93	0	80	38	345	5.8	10.3	0	0	0	0	ı
	2	1	0	0	2	1	0	0	22	25	0	0	9.7	0	0	0	0	ı

0

2

0

Record Cnt 1440

06-06-2024

Start Date 3:20:00 PM

End Date 07-06-2024

2

3:19:00 PM **PMA** CO₂ NO2 PrpM RH % CO О3 SO2 TmpC WDir **WSpd** Pwr V ug/m3 Deg. C Deg. ppb ppb ppb mph ppm ppm mm 55,6958 7,27430 0 36,3854 19,8437 153,784 Ave .105395 87.8868 6.84027 .040833 96.0180 .14625 10,2432 0 0 3152 344 Max 97 357 136 91 .76 100 26 3.9 10.5 0 .34 Min 2 2 1 0 1 0 0 60 4 1 0 9.7 0 0 0 0 **EPAS** 55,6958 7.27430 .105395 87,8868 36,3854 6.84027 .040833 96.0180 19,8437 153,784 .14625 10,2432 0 3152 0 919217 97 0 0 0 .34 357 91 .76 26 344 3.9 10.5 0 136 100 2 0 0 60 0 9.7 116.419 7.625 .122134 106.413 40.025 9.37307 .091192 100 23.9769 104.907 .01 10,2944 0 Daily 0 3152 74 .34 351 136 91 .76 100 26 306 .5 0 10.5 0 0 0 Thu, Jun 6, 2024 0 2 0 23 .04 34 20 0 100 48 0 0 0 9.9 0 0 Ave Period 24 116.419 7.625 0 106.413 40.025 9.37307 .091192 100 23.9769 104,907 .01 10.2944 0 0 0 .122134 06-06-2024 11:59 3152 74 351 136 91 .76 100 26 306 .5 10.5 0 0 0 0 .34 2 20 0 0 23 48 0 0 0 0 34 100 9.9 0 .04 21,3739 7.07608 .095934 77.4152 34,3282 5.40869 .012369 93.7673 17.5076 181,409 .223260 10.2143 0 Daily 0 1379 357 129 54 .56 100 25 344 3,9 97 .33 Fri. Jun 7, 2024 10.3 0 0 0 0 0 2 0 60 0 0 4 9.7 0 0 0 0 Ave Period 24 181,409 34,3282 17.5076 .223260 21,3739 7.07608 0 .095934 77.4152 5.40869 .012369 93.7673 10,2143 0 0 0 0 07-06-2024 03:19 0 344 0 1379 129 .56 25 3.9 0 0 97 .33 357 54 100 10.3 0

0

60

4

0

1

Environmental Report

0

0

0

0

9.7

0

Report Main Preferences Header Data

Record Cnt 1440

22-07-2024

Start Date 2:06:00 PM

End Date 23-07-2024

PMA ug/m3	0 0 0 0	
Max Min 81 50 93 .52 65 35 30 .14 100 31 359 3.7 10.5 0 0 0 0 Min 2 1 0 0 2 1 0 0 55 23 0 0 9.1 0 0 0 EPAS 8.17361 3.52152 30.4138 .075291 19.9229 12.3701 1.14861 .001041 89.4854 25.2861 200.05 .142291 10.1427 0 0 0	0 0 0	
Min 2 1 0 0 2 1 0 0 2 1 0 0 55 23 0 0 9.1 0 0 0 EPAS 8.17361 3.52152 30.4138 .075291 19.9229 12.3701 1.14861 .001041 89.4854 25.2861 200.05 .142291 10.1427 0 0 0	0 0 0	
EPAS 8.17361 3.52152 30.4138 .075291 19.9229 12.3701 1.14861 .001041 89.4854 25.2861 200.05 .142291 10.1427 0 0 0	0 0	
	0	
919217 81 50 93 .52 65 35 30 .14 100 31 359 3.7 10.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 0	١.
Daily 12.9191 6.73063 20.1498 .081666 29.9747 17.4983 2.66161 .002525 92.7676 24.9730 200.491 .077609 10.3055 0 0 0	0	1
Mon, Jul 22, 2024 81 50 73 .52 65 35 30 .14 100 29 355 2.4 10.5 0 0 0	0	1
	0	ı
Ave Period 24 12.9191 6.73063 20.1498 .081666 29.9747 17.4983 2.66161 .002525 92.7676 24.9730 200.491 .077609 10.3055 0 0 0	0	T
22-07-2024 11:59 81 50 ⁷³ .52 65 35 30 .14 100 29 355 2.4 10.5 0 0 0	0	1
	0	
Daily 4.84160 1.26832 37.6205 .070815 12.8652 8.76950 .086288 0 87.1808 25.5059 199.739 .187706 10.0283 0 0 0	0	1
Tue, Jul 23, 2024 18 7 93 .34 41 23 7 0 100 31 359 3.7 10.3 0 0 0	0	1
	0	ı
Ave Period 24 4.84160 1.26832 37.6205 .070815 12.8652 8.76950 .086288 0 87.1808 25.5059 199.739 .187706 10.0283 0 0 0	0	1
23-07-2024 02:05 18 7 93 .34 41 23 7 0 100 31 359 3.7 10.3 0 0 0	0	
	0	

Record Cnt 1440

16-08-2024

Start Date 1:35:00 PM

	1.35.0	UU PIVI																
End Dat		3-2024 00 PM																
Ave	PMA ug/m3 11 .436 1	5,97777	CO2 ppm 0	CO ppm .057493	NO2 ppb 34,7201	O3 ppb 17,8590	SO2 ppb 2.0875	PrpM mm .004569	RH %	TmpC Deg. C 25,0298	WDir Deg. 214,579	WSpd mph .16375	Pwr V	0	0	0	0	
Max	70	61	0	1.06	375	136	68	.63	100	30	358	4.2	10.2430	0	0	0	0	
Min	2	1	0	0	2	1	0	0	58	23	14	0	9.7	0	0	0	0	
EPAS 919217	11.4361 70 2	5.97777 61 1	0 0 0	.057493 1.06 0	34.7201 375 2	17.8590 136 1	2.0875 68 0	.004569 .63 0	91.7083 100 58	25.0298 30 23	214.579 358 14	.16375 4.2 0	10.2438 10.5 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Dai ly Fri, Aug 16, 2024	14.8176 66 2	8.6672 61 1	0 0 0	.067392 .29 0	50.336 375 2	23.9088 136 1	4.72 68 0	.010128 .63 0	91.2128 100 61	25.2208 30 23	196.212 358 14	.21536 4.2 0	10.3352 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 16-08-2024 11:59	14.8176 66 2	8.6672 61 1	0 0 0	.067392 .29 0	50.336 375 2	23.9088 136 1	4.72 68 0	.010128 .63 0	91.2128 100 61	25.2208 30 23	196.212 358 14	.21536 4.2 0	10.3352 10.5 9.9	0 0 0	0 0 0	0 0 0	0 0 0	l
Dai l y Sat, Aug 17, 2024	8.84294 70 2	3.91533 51 1	0 0 0	.049901 1.06 0	22.7447 51 2	13.2196 28 1	.068711 8 0	.000306 .13 0	92.0883 100 58	24.8834 30 23	228.665 354 30	.124171 4 0	10.1737 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	
Ave Period 24 17-08-2024 01:34	8.84294 70 2	3.91533 51 1	0 0 0	.049901 1.06 0	22.7447 51 2	13.2196 28 1	.068711 8 0	.000306 .13 0	92.0883 100 58	24.8834 30 23	228.665 354 30	.124171 4 0	10.1737 10.3 9.7	0 0 0	0 0 0	0 0 0	0 0 0	

Record Cnt 1440

19-09-2024

Start Date 3:12:00 PM

End Date 20-09-2024

3:11:00 PM

	3:11:0	00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	18.4451	9.93472	0	.072451	38.0930	20.7465	5.02152	.005097	89.3520	26.1270	253.053	.255763	10.3373	0	0	0	0	
Max	108	68	0	.5	246	95	83	.65	100	32	359	4.6	10.6	0	0	0	0	
Min	2	1	0	0	2	1	0	0	56	22	0	0	9.9	0	0	0	0	
EPAS	18,4451	9.93472	0	.072451	38.0930	20.7465	5.02152	.005097	89.3520	26.1270	253.053	.255763	10.3373	0	0	0	0	
919217	108	68	0	.5	246	95	83	.65	100	32	359	4.6	10.6	0	0	0	0	
	2	1	0	0	2	1	0	0	56	22	0	0	9.9	0	0	0	0	I
Daily	24.9696	11.6041	0	.092443	34.7935	22.0776	7.26704	0	94.1893	25.6363	282.924	.232765	10,4821	0	l o	0	0	1
Thu, Sep 19, 2024		56	0	.18	71	37	36	0	100	30	358	3.7	10.6	0	0	0	0	4
Thu, 00p 13, 2024	2	1	0	0	2	1	0	0	69	24	4	0	10	0	0	0	0	4
Ave Period 24	24.9696	11.6041	0	.092443	34.7935	22.0776	7.26704	0	94.1893	25.6363	282.924	.232765	10.4821	0	0	0	0	i
19-09-2024 11:59	104	56	0	.18	71	37	36	0	100	30	358	3.7	10.6	0	0	0	0	1
	2	1	0	0	2	1	0	0	69	24	4	0	10	0	0	0	0	١
Daily	14.6677	8.96820	0	.060877	40.0032	19.9758	3.72149	.008048	86.5515	26.4111	235.759	.269078	10.2535	0	0	0	0	i
Fri, Sep 20, 2024	108	68	0	.5	246	95	83	.65	100	32	359	4.6	10.5	0	0	0	0	4
	2	1	0	0	2	1	0	0	56	22	0	0	9.9	0	0	0	0	
Ave Period 24	14.6677	8.96820	0	.060877	40.0032	19.9758	3.72149	.008048	86.5515	26.4111	235.759	.269078	10.2535	0	0	0	0	i
20-09-2024 03:11	108	68	0	.5	246	95	83	.65	100	32	359	4.6	10.5	0	0	0	0	
	2	1	0	0	2	1	0	0	56	22	0	0	9.9	0	0	0	0	
1	_	_						_								_	_	_

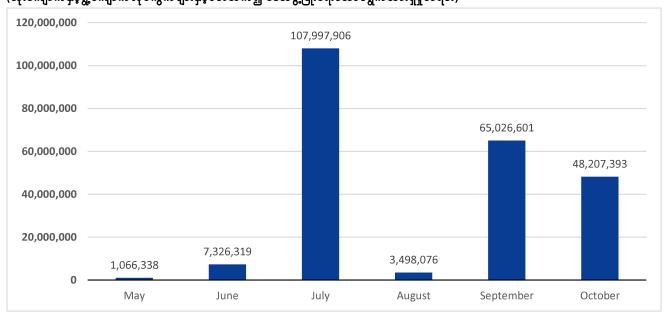
Record Cnt 1440

23-10-2024

Start Date 3:47:00 PM

End Dat)-2024 00 PM																
	PMA ug/m3		CO2 ppm	CO ppm	NO2 ppb	O3 ppb	SO2 ppb	PrpM mm	RH %	TmpC Deg. C	WDir Deg.	WSpd mph	Pwr V					
Ave	12.6361	4.80416	.000694	.074243	22.2333	14.4375	1.90625	0	88.4180	24.9652	169.236	.179513	9.93527	0	0	0	0	
Max	89	56	1	.71	59	34	23	0	100	31	358	5.2	10.2	0	0	0	0	
Min	2	1	0	0	2	1	0	0	56	22	0	0	9.3	0	0	0	0	
EPAS	12.6361	4.80416	.000694	.074243	22.2333	14.4375	1.90625	0	88.4180	24.9652	169.236	.179513	9.93527	0	0	0	0	ı
919217	89	56	1	.71	59	34	23	0	100	31	358	5.2	10.2	0	0	0	0	1
	2	1	0	0	2	1	0	0	56	22	0	0	9.3	0	0	0	0	l
Daily	19.8620	7.35091	.002028	.091805	34.2068	21,6572	2.33874	0	97.7991	24.1277	143.931	.078701	10.0137	0	0	0	0	ı
Wed, Oct 23, 2024	58	41	1	.34	59	34	15	0	100	27	188	3.6	10.2	0	0	0	0	1
	2	1	0	0	2	1	0	0	78	23	14	0	9.6	0	0	0	0	L
Ave Period 24	19.8620	7.35091	.002028	.091805	34.2068	21.6572	2.33874	0	97.7991	24.1277	143.931	.078701	10.0137	0	0	0	0	ĺ
23-10-2024 11:59	58	41	1	.34	59	34	15	0	100	27	188	3.6	10.2	0	0	0	0	ı
	2	1	0	0	2	1	0	0	78	23	14	0	9.6	0	0	0	0	ı
Daily	8.87434	3.47835	0	.065100	16	10.6789	1.68109	0	83.5343	25.4012	182.410	.231995	9.89440	0	0	0	0	Ī
Thu, Oct 24, 2024	89	56	0	.71	48	27	23	0	100	31	358	5.2	10	0	0	0	0	L
	2	1	0	0	2	1	0	0	56	22	0	0	9.3	0	0	0	0	ı
Ave Period 24	8.87434	3.47835	0	.065100	16	10.6789	1.68109	0	83.5343	25.4012	182.410	.231995	9.89440	0	0	0	0	ĺ
24-10-2024 03:46	89	56	0	.71	48	27	23	0	100	31	358	5.2	10	0	0	0	0	

SHWE TAUNG CEMENT COMPANY LIMITED


Bi-Annual Environmental Monitoring Report

APPENDIX-D Corporate Social Responsibility

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ၊ ရွှေတောင်သတ္ထုတူးဖော်ထုတ်လုပ်ရေးကုမ္ပဏီလီမိတက် (ထုံးကျောက်နှင့်ရွံ့ကျောက်လုပ်ကွက်များနှင့်ပတ်သက်၍ ဒေသဖွံ့ဖြိုးရေးဆောင်ရွက်ထားရှိမှုစာရင်း)

စဥ်	အကြောင်းအရာ	May - 2024	Jun - 2024	Jul - 2024	Aug - 2024	Sep - 2024	Oct - 2024	Total (kyats)
၁	လမ်းပန်းဆက်သွယ်ရေး တိုးတက်ကောင်းမွန်အောင် ဆောင်ရွက်ပေးနိုင်မှု			104,983,900	438,180	1,217,500		106,639,580
J	ပြည်သူများ ရေရရှိမှု အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု						882,000	882,000
9	လျှပ်စစ်မီးရရှိရေး အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု							0
9	ပညာရေး ဖွံ့ဖြိုးတိုးတက်စေရန် အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု	350,000	1,003,000	2,394,940	1,267,800	1,720,000	2,206,730	8,942,470
9	ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်စေရန် အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု	295,078	267,609	162,146	426,336	277,851	383,663	1,812,683
G	လူမှုရေးနှင့် ကယ်ဆယ်ရေး အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု	421,260	6,055,710	34,000	1,365,760	718,750	325,000	8,920,480
9	ဘာသာသာသနာရေး အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု			422,920			3,500,000	3,922,920
စ	သဘာဝဘေးအန္တရာယ်ကျရောက် ပျက်စီးမှုများ အထောက်အကူပြု ဆောင်ရွက်ပေးနိုင်မှု					61,092,500	40,910,000	102,002,500
	စုစုပေါင်း	1,066,338	7,326,319	107,997,906	3,498,076	65,026,601	48,207,393	233,122,633

ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီမိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ၊ ရွှေတောင်သတ္ထုတူးဖော်ထုတ်လုပ်ရေးကုမ္ပဏီလီမိတက် (ထုံးကျောက်နှင့်ရွံ့ကျောက်လုပ်ကွက်များနှင့်ပတ်သက်၍ ဒေသဖွံ့ဖြိုးရေးဆောင်ရွက်ထားရှိမှုစာရင်း)

လမ်းပန်းဆက်သွယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ -၂၀၂၄ခုနှစ်၊ ဇူလိုင်လအတွင်း ကူပြင်ကျေးရွာသို့ သွားသည့် လမ်းအရှည် (၁.၂၆) မိုင် ကျေးလက်လမ်းအား လိုအပ်သည့်မြေနှင့် ကျောက်များ ဖြည့်၍ လမ်းမြေညှိပေးခြင်း။

ပုံ - ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း ပြည်ညောင်ကျေးရွာအတွင်းရှိ အမှတ်(၂)ရပ်ကွက် လမ်းအား ကွန်ကရစ်လမ်းခင်းနေစဉ်။

ပညာရေးဖွံ့ဖြိုးတိုးတက်စေရန် အထောက်အကူပြုပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ – ၂၀၂၄ခုနှစ်၊ စွန်လမှ အောက်တိုဘာလအထိ ပြည်ညောင်ကျေးရွာ အခြေခံပညာအထက်ကျောင်းမှ ဆရာမအား လစာငွေ ပေးအပ်နေစဉ်။

ပုံ-၂၀၂၄ခုနှစ်၊ ဇွန်လမှ အောက်တိုဘာလအထိ ပြည်ညောင် ကျေးရွာ အခြေခံပညာ အထက်တန်းကျောင်းမှ ကျောင်းသား၊ ကျောင်းသူ(၇)ဦးအား ပညာသင် ထောက်ပံ့ကြေး ပေးအပ်နေစဉ်။

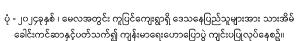
ပုံ- ၂၀၂၄ခုနှစ်၊ ဇူလိုင်လအတွင်း ကူပြင်ကျေးရွာစာသင် ကျောင်းတွင် "ဒို့ရွာရေကန်" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပ နေစဉ်။

ပုံ-၂၀၂၄ခုနှစ်၊ ဇွန်လအတွင်း ပြည်ညောင်ကျေးရွာ စာကြည့်တိုက်တွင် "ဒို့ရွာရေကန်" ခေါင်းစဉ်ဖြင့် စာဖတ်ပွဲ ကျင်းပနေစဉ်။

ကားဖြင့်အကြိုအပို့ ပြုလုပ် ပေးခြင်း။

ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလ ကျင်းပပြုလုပ်သော သာစည်မြို့နယ်အဆင့် ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကူပြင် ကျေးရွာ အခြေခံပညာ အင်္ဂလိပ်စာနှင့် သင်္ချာစွမ်းရည်ပြိုင်ပွဲအား ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာ အထက် အလယ်တန်းကျောင်းတွင် ပျက်စီးနေသော မျက်နှာကြက်များအား ပြုပြင်ပေးခြင်း။ တန်းကျောင်းရှိ ကျောင်းသား၊ ကျောင်းသူများမှ သွားရောက်ယှဥ်ပြိုင်ဖြေဆိုရန် အတွက်

ပြည်ညောင်ကျေးရွာ၊ အခြေခံပညာအထက်တန်းကျောင်းတွင် သောက်ရေသန့်စက်အတွက် ရေသိုလှောင်ကန်အသစ် တည်ဆောက်ခြင်းအတွက် ရန်ပုံငွေထည့်ဝင်ကူညီပံ့ပိုးပေးခြင်း။


ရွှေတောင်ဘိလပ်မြေကုမ္ပဏီလီဓိတက် (အပါချီဘိလပ်မြေစက်ရုံ) ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာ အခြေခံပညာကျောင်းများမှ ကျောင်းသား/ကျောင်းသူ ပညာသင်ထောက်ပံ့ကြေးပေးအပ်ခြင်း

ကျန်းမာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ–၂၀၂၄ခုနှစ် ၊ ဩဂုတ်လအတွင်း ပြည်ညောင်ကျေးရွာ အုပ်စုအတွင်းရှိ ပြည်ညောင် ကျေးလက်ဆေးပေးခန်းတွင် ဆေးအငွေ့ ရှူ(ချွဲပျော်စက်)အား လှူဒါန်းနေစ၌။

လူမှုရေးနှင့်ကယ်ဆယ်ရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ပုံ -၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလမှ စတင်၍ ကူပြင်ကျေးရွာရှိ အသက်အရွယ် ကြီးရင့်သော အဖိုးအဖွားများအား ကူညီထောက်ပံ့ ပေးခြင်း။

ပုံ – ပြည်ညောင်နှင့်ကူပြင်ကျေးရွာရှိ စာကြည့်တိုက်တွင် ဒေသနေ ကလေးငယ်များ ကာယဉာဏ ဖွံ့ဖြိုးစေရန် လေ့ကျင့် ကစားစရာများနှင့် သင်ထောက်ကူပစ္စည်းများထောက်ပံ့ ပေးထားခြင်း။

ပုံ - ပြည်ညောင်နှင့် ကူပြင်ကျေးရွာရှိ ထာဝရအလင်းတန်း စာကြည့်တိုက်တွင် ဒေသနေပြည်သူများ စာပေဗဟုသုတ၊ ပြင်ပအထွေထွေဗဟုသုတ၊ သတင်းအချက်အလက်နှင့် နည်းပညာများ လေ့လာနိုင်စေရန်အတွက် လစဥ် စာအုပ်အသစ်များထားရှိပေးခြင်းနှင့် Internet Wi-Fi အခမဲ့ တပ်ဆင်ပေးထားခြင်း။

ဘာသာသာသနာရေး ဖွံ့ဖြိုးတိုးတက်ကောင်းမွန်စေရန် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

ငုံ - ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကူပြင်ကျေးရွာ၊ စုပေါင်းမဟာဘုံ ကထိန်ပွဲအတွက် အလှူငွေထည့်ဝင်လှူဒါန်းခြင်း။

ပုံ-၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ပြည်ညောင်ကျေးရွာ၊ စုပေါင်းမဟာဘုံကထိန်ပွဲ အတွက် အလှူငွေထည့်ဝင်လှူဒါန်း ခြင်း။

သဘာဝဘေးအန္တရာယ်ကျရောက်ပျက်စီးမှုများအတွက် အထောက်အကူပြု ပံ့ပိုးကူညီဆောင်ရွက်ပေးခြင်း

၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလ နှင့် အောက်တိုဘာလတွင် စက်ရုံးအနီးနားရှိကျေးရွာများနှင့် အခြားဒေသများတွင် ယာဂီမုန်တိုင်းကြောင့် ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။

ပုံ-၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း ပြည်ညောင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။

ပုံ- ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း အုတ်ကျင်းကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။

ပုံ-၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း တောင်ပြည်ညောင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။

ပုံ– ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း – ကူပြင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီ ထောက်ပံ့ပေးခြင်း။

ပုံ- ၂၀၂၄ခုနှစ်၊ စက်တင်ဘာလအတွင်း ဗုံပင်ကျေးရွာရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။

ပုံ- ၂၀၂၄ခုနှစ်၊ အောက်တိုဘာလအတွင်း ကလောမြို့ရှိ ရေဘေးသင့်ပြည်သူများအား ကူညီထောက်ပံ့ပေးခြင်း။